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FLEET OF MODERN CARGO SAILBOATS
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Pure sailing vessels:
90% carbon emission reduction (1-2 g CO2/ton/ km) >R
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6. MODERN GARGO SAILBOATS
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6. MODERN CARGO SAILBOATS

Grain de Sail 11l = 2027 :

110m and 2800 T payload
capacity (~200 TEUs) |
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b, CEFICIENT CARGO SAILING
< .

3 key points for’ efficient cargo sailboat design:
1. Hull optimized for wind propulsion,
2. Favorable ratio between wind propulsion capacity and loaded
ship weight,
3. Renewable energy production for onboard operations.
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KEY LEARNINGS

The wind-powered maritime transport market is emerging, but volumes remain relatively low for now.

Refjucing the cost of wind-powered transport is essential to attract more shippers and increase
volumes.

Scaling wind-powered transport means expanding the fleet of cargo sailing ships and increasing the
loading capacities of these ships.

The lack of standards and controls for decarbonization performance creates confusion for shippers
(not all wind propulsion solutions or wind-propelled ships are equal).

Routing and operations management are crucial for successful decarbonization. __
Wind-powered transport must adapt to the shippers’ operating modes and existing infrastructures.
Goods must be perfectly secured both on the docks and onboard.

Departure frequency, more than transit times, is key to meetin"g the logistics,needs of shipper clients.

Technical solutions provided by equipment manufacturers allow for larger ships while continuing to
drastically reduce carbon emissions (reefable sails with large surface areas capable of sailing in all
wind directions and strengths).

The social framework for sailors (types of contracts, pay, working conditions, etc.) is inseparable from
the projects for decarbonizing maritime transport. )
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Agenda

e Route Profiles
e Equipment Ratings
e Space Allocation

e Shore Charging
Considerations

2024 ABB. All rights reserved.

-
HEENEES
2

e B BRVAY
ANFERREE NG



What are the major
design risks in any
ship design?



Design Risks

* Weight growth
* Lack of space
e Stability limits

* Speed/power

© 2024 ABB. All rights reserved.
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Route Profiles

Traditional Diesel Hybrid - Electric
* Design Speed * Cycle Energy
* Endurance/range » Trips/year

* Years of operation before battery replacement

2024 ABB. All rights reserved. MAD I!.]



Route Profiles

Traditional Diesel Hybrid - Electric
* 13 kts * 2.8 nmcrossing
* 1500 nm range * Charge on one end

in precision required in speed/power calculations

2024 ABB. All rights reserved. MAD .!2



Route Profiles
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e 2.8 nmcrossing: 11 minutes @ 12 knots
* 3 minutes maneuvering, 16 minutes unloading/loading in berth

* 9 daily round trips

© 2024 ABB. All rights reserved.
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Route Profiles
Cycle Energy

13-Knot Transit Profile Summary

Fwd Aft Propulsion

Propulsion Power

Voyage Segment Duration (Min)  Power (bkW) (bkW)
Disconnection (N/A) 0 0.0 0.0
® Sp@@d and power Maneuvering (Departing) 0.6 165.1 385.1
Accelerating 1.1 220.1 935.3
* Current Transit 11.0 260.2 1040.9
Decelerating 0.7 54.6 218.6
¢ Weathe r Approach / Coast 0.9 0.0 275.1
. . Maneuvering (Arriving) 0.7 110.0 220.1
* Trl p d uration Connecting - Loading/Unloading 0.7 55.0 220.1
° Loading Conditions Charging - Loading/Unloading 14.1 55.0 220.1
Disconnecting - Loading/Unloading 0.2 55.0 220.1
¢ Hotel Loads Maneuvering (Departing) 0.6 165.1 385.1
Accelerating 1.1 220.1 935.3
Transit 11.0 260.2 1040.9
Decelerating 0.7 54.6 218.6
Approach / Coast 0.9 0.0 275.1
Maneuvering (Arriving) 0.7 110.0 220.1
Loading/Unloading 15 55.0 220.1

A\ HR HR
© 2024 ABB. All rights reserved. MW l!4
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Equipment Ratings and Margin
Electric Motors

10875 ROXTEC-FRAME

CABLE ENTRY: RIGHT SIDE

GREASE INLET

WATER TEMPERATURE SENSORS

2x PT100 _
VIEW C ° °
e,
~ °
my
Q
SHAFT GROUNDING
1x BPK-AM
q GREASE OUTLET

Lx PE M20

1340

STEP PROTECTION
LEAKAGE SENSOR

© 2024 ABB. All rights reserved.

Power [kW]

Electric motors are torque limited by frame size

Possible to increase RPM to increase power, without
changing the frame
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Equipment Ratings and Margin
Batteries

* Max Crate

* Need to calculate battery
charge/discharge from route
profile

e Share with battery vendors or
ABB to select size

2024 ABB. All rights reserved.



Equipment Ratings and Margin
Hotel Loads

This fan is
keeping the
output matrices

Electrical equipment runs on cooling

* Be careful with diesel parent vessel ELAs, similar
size hybrid vessel will be higher

e Cooling pumps

* Cooling fans

* Anti condensation heaters

* UPSs

* HVAC for multi-drive and battery rooms

* Avoiding condensation

A\ HR HR
© 2024 ABB. All rights reserved. MW .!8
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Space Allocation
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Space Allocation
Multi Drive Lineups

Lineup Length

80

y =0.0055x + 2.8771
R?2=0.9711
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0 2000 4000 6000 8000 10000 12000 14000
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2024 ABB. All rights reserved.

Lineup Weight
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Space Allocation = =
Control Cabinets § EI }
i EI
« 1200 mm x 800 mm x 400 mm : g [I 3
*  Wall mounted R zI ?
N
* 100ke | 8 7 |8
* 1x per motor g S EI ;
* 1x perengine f :
e 2x per Alarm and Monitoring (min) EE%
0 e
e 2x control network A B e
* 1x Remote Diagnostics/Data Logger System # %Fsrﬁm
1 o
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Shore Charging

Mains Power Batteries

Charging Tower/

Cables Plug on vessel

Utility Transformer

AC

Contactor and Isolation Contactor and

ACtoDCC t
Breaker Transformer Breaker o SINELESE

Shore Side Vessel Side

AL IR R
2024 ABB. All rights reserved. MAD l!4



Shore Charging

Mains Power

Charging Tower/

Cables Plug on vessel

Utility Transformer

DC

“Breaker” and
Contactor

AC to DC Converter Batteries

Shore Side Vessel Side

AL IR R
2024 ABB. All rights reserved. MAD l!5



Shore Charging

AC DC
* Less land side equipment * Less equipment on the vessel
* Medium Voltage can provide higher (>15MW) power * Less long lead time transformers

* Feasible up to “6MW charging power
e Supports land side batteries

AL IR R
2024 ABB. All rights reserved. MAD .!6



Shore Charging
Who is responsible?

* AC-Transformer Secondary grounding

e REALLY need high resistance grounding

YOU are responsible for the interface!

2024 ABB. All rights reserved. l!7



Shore Charging
Who is responsible?

* AC - Make line dead prior to connection/disconnection

e Shore electrical engineers unclear not used to PLC control/remote switching

YOU are responsible for the interface!

2024 ABB. All rights reserved. MAD .!8



Shore Charging
Who is responsible?

e DC - Short Circuit contribution from the shore to the vessel

* Need an IGBT based static switch and control system on shore to protect cables and bus bar

YOU are responsible for the interface!

AL IR R
2024 ABB. All rights reserved. MAD l!g



PS.

Just use metric...
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@ A Novel High Thrust Efficiency Stationary Wind

CoFlow Jet Sail Enabled by CoFlow Jet
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@ DECARBONIZATION OF MARINE TRANSPORTATION:
CoFlow Jet | A NECESSITY FOR GLOBAL ECONOMY AND OUR LIFE

Marine Ship Traffic | Tracked by Google Maps
* 90% of global goods are transported by ships

o 2019*:
Cargo Ships: 100,000
Goods Shipped: 11 Billion Tons
CO2 Emission: 1.076 Billion Tons
Fuel Burned: 230 Million Tons
Fuel Cost: $165 Bn (§700/ton)

« EMISSION
1 of the largest ships:

-3 =50 million cars*

* White paper: Wind Propulsion for Ships # E. Stratiotis, “Fuel Cost in Ocean Shipping”
Wind Ship Association, France, Sept. 2022 1/22/2018

© CoFlow Jet, LLC - All Rights ReserVa.


https://drive.google.com/file/d/1NOMu1kGaXvNa1CkspSYqHUOWk3xeb_eO/view
https://www.morethanshipping.com/fuel-costs-ocean-shipping/

. THE OCEAN IS RICH IN WIND POWER:
CoFlow Jet | CLEAN, SUSTAINABLE, AND PREDICTABLE

Conventional flexible wind sails: large,
ineffective, inefficient, difficult to control.

« Too weak to power modern cargo ships.

© CoFlow Jet, LLC - All Rights Reserv&d.



G PROBLEMS OF CURRENT RIGID WIND SAILS:
ColfFlow Jet

low LOW THRUST, COMPLEX, HIGH COST, LONG RO

FLETTNER ROTORS: Spinning Cylinders

TURBOSAILS

.............
) o e s
TR — ]

RIGID, THICK WINGS:

N s sm———
; @ FleetMon
Tt s < Tracking the Seven Seas.

e Y

FIG.
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Credit: Katherine Kornei, 2017

© CoFlow Jet, LLC - All Rights ReserVi.



G, OUR SOLUTION - COFLOW JET (CFJ) STATIONARY

CoFlow-JeT | CYLINDER: ULTRA-HIGH NET LIFT AND POWER

TLiﬂ COFLOW JET STATIONARY CYLINDER WIND SAILS:

 No rotation, simple system
« Low pressure fans embedded inside the cylinder

 Sucks a small amount of air flow at the 4 o'clock position,
pressurized by the fans, and ejects the air mass tangent to the
surface at the 12 o'clock position

« Ultra-high lift coefficient (CL>20) from wind
« Very low power required

 Ultra-high net propulsive power from wind
 Originated from Aeronautics Research

 Verified numerically and experimentally in U.S. National
Laboratories

© CoFlow Jet, LLC - All Rights Reservtd.



C, OUR SOLUTION - COFLOW JET (CFJ) STATIONARY

CoFlowJet | cy|INDER: UNIQUE AND SUPERIOR

WIND TUNNEL TESTING UNDER DARPA FUNDING

* 18 Patents issued
« 20 Years research
« Grants received: $2.5 Mn (DARPA, NASA, NSF, AFRL, ARQ, CIRA, EBPT, ...)

0.3-0.5Q Super Lift Runs 41-47 120-145 kRPM

9_
£ 2o
8r 2 e, B
A
7+ ]i*‘
injection _ 6 “q.
suction T
/ L5 ik —— 145 KRPM 0.5Q
_ o= e g N o il —a— 120 kRPM 0.3Q
S ar ih - %+ 120 kRPM 0.3Q
H —8— 120 kRPM 0.3Q
. 3- 44 —+— 145 kRPM 0.5Q
co-flow jet airfoil , 4 BASELINE |=#=Bascline
1k

~

-1 -0.5 0 0.5 1

© CoFlow Jet, LLC - All Rights Reservhd.



Co,:g ot | COFLOW JET CONCEPT EXPERIMENT ANIMATION

LilFt

A Revolutionary Technology: CoFlow Jet (CFJ) Airfoil

© CoFlow Jet, LLC - All Rights Reser&3.


https://acfdlab.miami.edu/images/coflowjet-concept-exp.mp4

@ COMPARISON OF COFLOW JET CYLINDER

CoFlow-Jet | WITH FLETTNER ROTOR BY CFD

CoFlow Jet Cylinder Flettner Rotor

—

I Lift"" ‘

\ \\‘/ 7, /,

\ /
s

PN
i I M | \ \
CL=15, Pc=3.3 CL=5, Pc=0.7

High Lift (weight=0, V,sate/ Voo =3)

© CoFlow Jet, LLC - All Rights Reservtd.



Summary: Reducing CL decreases CFJ power

exponentially; Two cases studied: CL=15.3, CL=7.6

Table 1 CFJ sail compared with a Fletter rotor

Cases | CL | cD | PC |cL/cD |cL/Pc| AR
FI 2D
mtoertt(”;é) 5.000| 1.90 | 0.70 | 2.632 | 7.143 | test
CFIP 1530|420 | 330 | 3.643 | 4636 | 8
CFIE [0.930[337|0.77 | 2947 | 1290 | 5
CFJE2 | 76 | 215|035 | 353 |2171| 5

Case 2: CFJ Efficiency (CFJE):
CL=9.93, Pc=0.77, AR=5

Case 1: CFJ Performance
(CFJP): CL=15.3, Pc=3.3, AR=8

- =

ach: 0 0.004 0.008 0.012 0.016 0.02 0.024 0.028 0.032 0.036 04|

© CoFlow Jet Lift, Inc - All Rights Reserr.



3D flow structures for CFJP

e 3D streamlines around CFJ wind sail, colored by Mach

&L iach - ___

0.03 0.06 0.09 0.12 0.5

» Vorticity structures (iso-surface

© CoFlow Jet Lift, Inc - All Rights ReservRd.



3D flow structures for CFJP

L 10% Span

s>

50% Span

Mach

mm 0.2
0.16

© CoFlow Jet Lift, Inc - All Rights ReserR4l.



CFJ sail net power across the full AWA range

Example Sail:
« Diameter: 3m
* Height: 24m

AWS(apparent wind speed):

10m/s
AWA: apparent wind angle

Viatio = ship/VAWS
Ppet = Pror — PFR/CF]

Pnet =0.5pV3 5 S[Vratio*(CL*sin(AWA)-CD*cos(AWA)) — Pc]

An efficient strategy is to use CFJE and CFJP mode at different AWA:

1) CFJE for headwind or tailwind with AWA <40-60deg, AWA>140deg

2) CFJP mode between 40deg and 140deg.

© CoFlow Jet Lift, Inc - All Rights Resenn.



Net Power Production Comparison at Different Velocity
Ratios

400[ - FR 600 ----@----- FR 800F ...+ FR N
. CFJP O R Breeeee CFJP por BB 700 | -l CFJP A A,
. - A 500F . ’ ™ P 4 4
300 v CFJE A/—*‘ “a 7 CFJE & A v CFJE .
B -7 . b E o A
IR CFJE2 " TG P CRIE2 i _ g9y Y 600 v CFJE2 & ST
~ 00l (VT \_A‘E ~ | A’v"v‘ T VA _S0oF £ v Ve B
B 200 B ’%’ v “v\\ w B 300 :_ I"’ , v % v\\\“ B 400 ':_ ,', , v v-V"‘W‘ <~ v\‘,‘
SN g’;ﬁv’ o0 Vz S K99 v~v B < A % 8
E B OO0 VW _Eag0f o OO0 SN 2300 F e = R
& 100¢ - ©ow = F o@PCOeg vy LT o990y vk
i f,vf Q‘ O X7 | g Q @, e I G ,/lv .'O Q.o s
i gl Q. 100 F /9 o QY 200F & o RO
ole o-e'sC AWS =10 m/s, [ go AWS =10 5n/§§ 100 F )i @‘0 AWS =10 ﬁs@
: Aref= 72 m 0 @-@igz Aref= 72 m 0 f@@.@’-@’ Aref= 72 m
| Vratio =0.7 Vratio =10 - Vratio =13
-]00 —L 1 I | ! 1 1 I | 1 I | I 1 J ']00 —L 1 I | ! 1 1 ! 1 1 I | I 1 J ']00 __I 1 ! | I 1 1 ! 1 1 I | I 1 J
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
AWA (°) AWA (°) AWA (°)

Vratio = 0.7 Veatio = 1.0 Vegtio = 1.3

* At low ship speed Vratio <1, CFJE and CFJE2 are more efficient at near headwind and tailwind conditions.
e At high ship Vratio >1, CFJP could be efficient for the whole AWA range.
« CFJ wind sails generate significantly more net power than Flettner Rotor across the whole range of AWA.

© CoFlow Jet Lift, Inc - All Rights Reseri¥d.



Net Power Comparison with Combined CFJ Modes:

Velocity Ratio = 0.7

FE SR FR pBB,

:_ """"""" CFJ A// A\

s X \A\

- 451 \2¥

E A

— A 'O" b

3 S Q@@@ OQGQ A
A Q,Q’ ‘Q@ A

- A \

: ol ©

0060 AWS =10 m/s

i A, =T72m’

- Vrati0=0'7

— | | |

! | | | ! | | ] ! | | |
80 100 120 140 160 180
AWA (°)

Blue symbol indicates CFJE or CFJE2
and red symbol indicates CFJP

CFJE modes to be used near head
wind or tail wind conditions.

CFJP mode to be used in side wind
conditions.

CFJ wind sails generate significantly

more net power than Flettner Rotor
across the whole range of AWA.

© CoFlow Jet Lift, Inc - All Rights Reserv.
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CFJ Wind Sail Net Power Improvement over Flettner Rotor:

Velocity Ratio = 0.7

“\ Improvment goes AWS =10 m/s
to infinity for AWA=30° _ 2
A =72m
V. . =07

ratio

| ! | ! |

20 40

1 ! | ! ! J
60 80 100 120 140 160 180
AWA (%)

® CFJwind sails have wider AWA range and generate significantly more net power
than Flettner Rotor, > 115% across the full AWA range.

FRnet |CFJWS net
AWA (deg.) power (kw) | power (kw) Improve (%)

0.000 -89.523 -81.806 0.000
10.000 -61.829 -18.822 0.000
20.000 -33.195 2.439 00
30.000 -4.490 44.392 o0
40.000 23.413 84.528 261.023
50.000 49.668 133.995 169.784
60.000 73.475 198.676 170.402
70.000 94.111 253.953 169.844
80.000 110.950 297.091 167.770
90.000 123.480 326.781 164.643
100.000 131.320 342.120 160.524
110.000 134.232 342.641 155.261
120.000 132.128 328.330 148.495
130.000 125.070 299.621 139.562
140.000 113.275 257.386 127.222
150.000 97.100 209.407 115.661
160.000 77.037 168.644 118.914
170.000 53.695 121.724 126.698
180.000 27.783 70.075 152.222

© CoFlow Jet Lift, Inc - All Rights Reserrdd.
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Net Power Comparison with Combined CFJ Modes:

Velocity Ratio = 1.3
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Blue symbol indicates CFJE or CFJE2
and red symbol indicates CFJP

CFJE modes to be used near head
wind or tail wind conditions.

CFJP mode to be used in side wind
conditions.

CFJ wind sails generate significantly

more net power than Flettner Rotor
across the whole range of AWA.
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CFJ Wind Sail Net Power Improvement over Flettner Rotor:

Velocity Ratio = 1.3

j Improvment goes AWS =10 m/s
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®* CFJwind sails generate significantly more net power than Flettner Rotor, >
100% across the full AWA range, much more at low AWA.

FRnet |CFJWS net
AWA (deg.) power (kw) | power (kw) Improve (%)

0.000 -139.797 | -138.695 0.000
10.000 -88.366 -21.725 0.000
20.000 -35.188 17.760 0

30.000 18.121 95.673 427.955
40.000 69.942 233.838 234.330
50.000 118.700 371.631 213.085
60.000 162.913 493.710 203.052
70.000 201.238 596.367 196.349
80.000 232.510 676.481 190.947
90.000 255.780 731.619 186.034
100.000 270.340 760.105 181.166
110.000 275.748 761.074 176.003
120.000 271.840 734.496 170.195
130.000 258.734 681.179 163.274
140.000 236.828 602.743 154.507
150.000 206.789 501.571 142.553
160.000 169.528 380.737 124.587
170.000 126.178 255.166 102.226
180.000 78.057 159.245 104.011

© CoFlow Jet Lift, Inc - All Rights Reser4.




Angle of Attack Variation Tolerance (2D)

» Definition of Thrust Coefficient:

)/

5\ | Freestream — | —4

(a) A0A<0 (b) AoA=0 (c) AoA>0

Ciprust = €, © COSAOA + C, * SINAOA
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Angle of Attack Effect

» Time-Averaged CL, Cp, Pe and CThrust VS AOA:

2 = Claedl 5 IF B (s /| —— cm0s
- —fr— =l ] —fr— Cp=Lb | m —_—— tr L
i, # [ 14 | 15 ’A |
I f I 12 I 14 e I
. A,f - : II N 4 I|
e Iz - o o p
] = \E‘! T s .'11.# 'ﬁ
. . : \ 8 b
CFJ wind sails can ; . E»f(n \_
tolerate wind Fer e o ;
dlrectlon ‘e = = o m .{:{ 0 40 & A0 Mo D0 B0 & A0 X .{;:1 ETEE T
variation range of (a) Lift Coefficient. (b) Drag Coefficient. (e) Thrust Coefficient.

-40deg to 20deg
without
substantial lift

MBE —g— s

drop.
¥
:E;::;‘::'lm N Sketch of C;, .
—-—(— JJ{ =05 .
T | magnitude
Freestream
(d) Power Coefficient. (e) Sketch of Crhrys magnitude.
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Angle of Attack Effect

»Time-Averaged C,/Cp, C /P, and C,/C . vs AOA

R

o M 40 &) B0 KD -1 B A0 40 20 o o 4 ) B 100 -0 30 &0 40 20 i o 40
Aad Awd Awd
Lift-Drag Ratio C,/P. Corrected C,/C,
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@ BENEFITS OF CFJ STATIONARY CYLINDERS:

CoFlowJeT | HIGH THRUST, SIMPLE AND LOW COST

20%-50% fuel reduction for large cargo ships
 Propulsive power increase > 100%

« Ultra-high thrust (>2X), CL > 15

* 60-95% wind power for mid/small size cargo ships
 Simple system with no rotating structures

« Compact for all ship sizes

 Very low power required

» Low cost of manufacturing/maintenance

* Retrofitting

» |deal for fully electric ships
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OUR FRONTIER IS BEYOND INFINITY Transforming Marine Propulsion
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BW
Performance evaluation of a
Flettner rotor with flap

Dr. G. Bordogna, Blue Wasp Marine BV




Presentation background & preface BW

“3
 Results obtained during Wind Assist PhD research (2013-2020) at TU Delft
* Credit to co-authors Albert Rijkens and Nico van der Kolk
* In 2023 TUDelft started a new large research program on Wind Assisted Propulsion

* Blue Wasp Marine is an independent consultancy working with all wind assist
technologies

© 2024 | BLUEWASP 67
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Flettner rotor & flap concept BW

* Flettner rotor is a spinning cylinder that, thanks to the
Magnus effect generates an aerodynamic lift

* It’s an active high-lift device, it requires a power input to
function

|
I
i
b

\ 3 I 4
\ | - !
\ I ! 3
O\ L) i kg | A g
v W | peicn (S T
: T e L2 Mttt

* Today, several ships are fitted with this device

s

FLETTNER-ROTOR

* Flap addition: the goal was to fix the separation point,
increase CL/CD ratio and improve upwind performance

Backau ship equipped with 2 Flettner rotors (1924)

© 2024 | BLUEWASP 68
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Magnus effect

Relations between forward speed and rotational
velocity of the rotor are expressed with the velocity
ratio or “k-factor”:

NTtD
k=

\Y

s
i)

|

O

N = Rotational speed rotor
D = Diameter of the rotor LY
V = Wind speed

© 2024 | BLUEWASP
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Importance of Lift-to-Drag ratio BW

Wind propulsion only

Due to “motorsailing”, WASP ships spend large
amount of time sailing upwind V. L
TW

© 2024 | BLUEWASP 70




Importance of Lift-to-Drag ratio BW

N . Wind assisted propulsion (wind + engine)
Due to “motorsailing”, WASP ships spend

large amount of time sailing upwind VTW L
Improving the lift/drag ratio would lead to Q D
great benefits to WASP ships Viotor
Vaw
ﬁ Vengine |:|

© 2024 | BLUEWASP 71




Wind tunnel experiments

Model experiments at the Politecnico di Milano
wind tunnel

Features

Length =36 m

With =13.8 m

Height =3.8 m

Max wind speed = 15 m/s

Benchmark tests with the “Delft Rotor”

© 2024 | BLUEWASP
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Wind tunnel experiments

Construction of the “Delft Rotor”

* Large scale Flettner rotor (D=1m and H=3.7m)
* No tip effects

* Very high Reynolds numbers

* Equipped with 2 force balances and 2 different
pressure measurement systems

© 2024 | BLUEWASP

Upper

balance

pressure
taps

Vertical
pressure
taps
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Results Delft Rotor BW

 Lift coefficients is not affected by the Reynolds 18 *
number for Re > 3.6 - 10° | 357
3+F 1
7 L
- - _ 2.5
* Drag coefficients are still influenced by scale . -
effects even for the highest Re tested © i ' 10 2
' 1 15¢
3T 8- Re =18-10° | 1 I 8 Re=18-10°
. Re = 3.6-10° I Re=36-10° | ]
» Tests with flap are conducted at Re = 3.6 - 10° 2| im_as.m-’; | sl gn,._s.s.mf; |
to achieve a velocity ratioof upto k = 5 Ly . il il ' .. M
o o—————
0051 152253354455 0051152253354455
VD k k
Re = —
V
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Results Delft Rotor BW

* Pressure distributions at Delft Rotor mid-span

* Effect of Re number on the pressure distribution
especially at the rear of the cylinder

© 2024 | BLUEWASP 75




Delft Rotor with flap

© 2024 | BLUEWASP
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Results Delft Rotor with flap BW

270°

* Flap influences the separation point of the flow
* Dragis reduced

g Wind 180°
e Liftis reduced to a smaller extent Drag
& a4l
* Lift-to-drag ratio roughly doubles for the flap at !
180 deg position = ks
1

— NO Flap
— Flap at 180°
-10 : : : -
0 90 180 270 360
O
14 : : 4 —— 12 T r
* NO Flap % NO Flap - NO Flap
12 f| — Flappos.=112° 1 3.5 H — Flap pos.~ 112° 10 H — tlappos=112°
— Flap pos.= 180° — Flap pos.= 180° — Flap pos.= 180°
10 { — Flap pos.= 202° 3 | = Flap pos.=202° || — Flap pos.= 202°
— Flap pos.= 225° — Flap pos.= 225° A= Flap pos.= 225°
8 H Flap pos.= 247° 2 5 L Flap pos.= 247° Q 6 Flap pos.= 247°
S 6l -~ &
b D 2 / ~ 4 J
41 . 1.5F O ARy .
9 / J ! 2t 4
0r 0.5 0r
-2 0 -2

1 15 2 25 3 35 4 45 5 1 1.5 2 25 3 35 4 45 5 1 15 2 25 3 33 4 435 5
k k k
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Performance prediction analysis BW

Interaction effects
between Flettner rotors

* Performance Prediction Programme

for WASP ships Helm/Yaw balance: HeE! Angle
. . limits on rudder angle
* Balances aerodynamic, hydrodynamic for maneuverability Heeling Force

and main propulsor forces
* Aerodynamic properties of the rotors

are based on the wind tunnel Off-design Inflow Driving Force
. and lightly-loaded o
experiments propeller operating
. . . condition
* Hydrodynamic coefficients are based — —
on the Delft Wind-assist Series Hydrodynamic /" Leeway Angle
Sideforce
Heading
Resistance increase due The hull operates at a
to heel and leeway angles / leeway angle, necessary
\ to generate sideforce and
\ keep the ship on track
© 2024 | BLUEWASP T8



Case study

Configuration

* Comparison of the standard FR and
the FR with flap

* Damen Combi Freighter 5000 with an
overall length of 86 m

e Rotor dimensions D =3m and H=18m

* Different rotor numbers and positions

© 2024 | BLUEWASP
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Tacking angle comparison

Results for two Flettner Rotors “Line”

e Aerodynamic thrust of the FR with Flap is greater or
equal compared to the Standard FR

* FR with Flap has a considerably smaller tacking angle
* Tacking angle of Standard FR is 42 deg

* Tacking angle of FR with Flap is 30 deg

© 2024 | BLUEWASP
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Fuel savings polar comparison BW

Results for two Flettner rotors “Line”: Vs=11 kts

e Polar diagrams show the percentage fuel savings of
the ship with rotors compared to the same vessel, Standard Flettner rotor Flettner rotor + flap

operating in the same conditions, but without wind
assistance

* FR with flap gives higher fuel savings particularly for
TWA < 90°

Fuel Savings [%]
Fuel Savings [%]

* Ship is able to operate at smaller wind angles

TWS [knots]

180

© 2024 | BLUEWASP 81




Evaluation on shipping route BW

Wind rose: Rotterdam — Trondheim route

-
* Wind conditions of the North Sea region e’ o .
l/“;— \ 5-010 knots
| & '5;‘ | 10-15 knots
* Fuel consumption polar diagrams are multiplied with R l; ‘. MPPPRIE S
the wind scatter diagrams for an S-N and N-S route ‘ s ) W 2530 knots
4 ~- W >30knots
2250 NS ~ _ 11350
718>O;
Percentage fuel savings at a ship speed of 11 knots
North Sea S-N 15.3% 18.1% 18.3%
North Sea N-S 11.4% 15.1% 32.5%
© 2024 | BLUEWASP 82



Conclusions BW

Aerodynamic characteristics

* Adding a flap to a FR can increase the lift-to-drag ratio up to a factor of 2

Performance improvements on a ship

* The higher lift-to-drag ratio of the FR with flap assures that it can attain a larger aerodynamic
thrust than a Standard FR for upwind sailing conditions

* The improved lift-to-drag ratio of the FR with flap results in a smaller tacking angle which
increases the operational profile

Fuel savings

* For the reference ship operating on the North Sea a performance increase of up to 32.5% is
reported due to the additional flap on the Flettner Rotors

© 2024 | BLUEWASP 83
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Lessons from sailing vessel disasters

“To the men of the Fantome- there but for the grace of God go |I”, The Ship and the Storm —
Hurricane Mitch and the Loss of the Fantome, by Jim Carrier

Sergio Perez, Ph.D.
Department of Marine Engineering, US Merchant Marine Academy
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Fantome, 286 foot sailing cruise ship,
sank in Oct 1998 in Hurricane Mitch,
waters off Honduras
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On October 26, passengers arrived at ship location in Omoa, Honduras. The Captain decided to cancel the cruise because of
Hurricane Mitch, but sailed for Belize with the passengers at midnight. This was done for the comfort of the passengers, as
travel to the airport was easier for passengers from Belize. A day was wasted in which a sheltering place for the ship could have
been found.

According to 1-2-3 Hurricane Avoidance Rule recommended at that time, the ship should not have sailed. Basically, a circle of
about 200 mile radius would be drawn around the hurricane’s 24 hours forecast position, and a ship should stay out of that
circle. Fantome was on the outer edge. We note that Fantome’s escape was blocked on the south by Honduras and west by
Belize.

GPPRE RN SRR N Jacksonville

le Maps Q

N

Andy Chase of Maine Maritime (author of Auxiliary Sail Operations): “it is clear that he (the Captain) is already hopelessly
trapped in a situation with no safe way out..his only option at that time was to find the best harbor”.
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But the Captain sailed to Belize City....

2 Forecast 0600 Z 10/28
Ship location after dropping Q
passengers off 10/26 19007

Forecast 1800 Z 10/27

e ¢

Mitch position 2100Z 10/26

Mitch approx. position at time of sinking

Q) Approximate Mitch
position 10/26 1900 Z

Belize

Ship Approx:sinking 10/27 2230Z

Q

S

Mitch 10/29:2100Z

¢

< Layers

Captain Andy Chase: “I believe the fundamental mistake made by the Captain of the Fantome was to

underestimate the unpredictability of a hurricane
88



El Faro. Sank off the Bahamas in Hurricane Joaquin enroute from Jacksonville Florida to

Puerto Rico, October, 2015 with 38 lives lost.

".capt. William Hoey
“MarineTraffic.com,

Figure 3. El Faro at sea loaded with containers, viewed from stern. (Photo taken March 12, 2012,
at Port Everglades, Florida, by Captain William Hoey)

Captain used commercial
hurricane position plotting
software with weather
information that was 5 hours
older than NHC forecast,
making the hurricane seem

further away than it really was.
But even if the forecast had

been correct, the Captain was
still too close to the storm, as
the Captain ascribed a precision
to the hurricane forecast
position that was unjustified.
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%~ El Faro 1800 Z 8/30

,‘.t_g:?i'“ N Q

Joaquin 1900Z per 0900 advisory

Joaquin 10 hr Q e

forecast

—@
& Joaquin real position

40 NM SOuth

\ El Faro 10 hr position (80
NM from 10 hr Joaquin
forecast)

-

| “Like a race car driver, he (the Captain) cornered tight along Joaquin’s presumed course in order to shave off
seconds from his time”, Rachel Slade, author of Into the Raging Sea




NTSB Marine Accident Report

From the NTSB report on
the El Faro sinking:

El Faro - Route Patterns

Typical Route (Jacksonville to San Juan)
—— T8 Erika Route (25-28 Aug.)
* Log Book Positions (26-28 Aug.)

“The NTSB determines that the
probable cause of the sinking of El
Faro ... was the captain’s insufficient
action to avoid Hurricane Joaquin,
his failure to use the most current
weather information, and his late
decision to muster the crew.....”

Final Voyage

L
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Nautical Miles
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ANC ather Con
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el

Figure 5. Alternate route via Old Bahama Channel (green) from Jacksonville to San Juan,
compared with normal route (orange) and El/ Faro’'s route on accident voyage (purple).
(Coast Guard diagram)



Better information now available from NHC (1-2-3 Rule no longer generally recommended):

Tropical-Storm Force Wind Speed Probabilities (Preliminary)
For the 120 hours (5.0 days) from 8 PM EDT FRI OCT 26 to 8 PM EDT WED OCT 31

Probalroplcal storm force wl -minute average >= 39 mph) from all tropical cyclones
O indicates Hurricane Sandy center location at 8 PM EDT FRI OCT 26, 2012 (Forecast/Advisory #19)

5 10 20 30 40 50 60 70 80 90 %

“What is an acceptable level of risk when lives and property may be at stake?”

Graphic from https://www.nhc.noaa.gov/aboutnhcgraphics.shtml?



Sailing Yacht Bayesian, sunk while at anchor in August, 2024 with 7
casualties

This tragic incident is still under investigation.

It is likely that downbursts played a large
role in this sinking.

Downbursts and microbursts are rapidly
descending masses of air from storm
clouds that move horizontally as they
approach the water/ground surface.

https://www.youtube.com/watch
?v=dOSlijoZnHwI| Note wind
ferocity and vast amounts of rain

SUPERYA CH T—T|ME S == - Video from 2 to 5 minute marks
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56 mlength (184 ft). Single 72 m high mast. The norm for
these vessels is two shorter masts.

B * Vessel has roughly 200 ton lead ballast, 60 tons of
which are on a retractable keel extending about 6 m
beyond the ship bottom. Total draft is 9.8 meters.

SUPERYACHT TIMES

Representation of retractable kéel (may not be accurate).
Image from Sailing Anarchy forum.

Sources: Stephen Edwards, skipper of Bayesian (2015-2020), Scuttlebutt Sailing news, August 27, 2024, and Perini Navi web sige



e Stability is reduced when the keel is up:
vessel does not right herself in rolls greater
than 75 degrees.

* With keel down, vessel rights herself up to
90 degrees

 SUPERVACHT-TIMES

* While anchored (sails furled), eyewitness reports say vessel was suddenly knocked down by wind
during a thunderstorm.

* Ship was anchored with retractable keel up, as called for in ship operating instructions from Perini
Navi (designers).

 ltalian government prosecutors said sinking was due to a downburst (ANSA.it)

* Vents on side of ship for HVAC and electricity generators were probably open, so down-flooding angle was
about 45 degrees.

Sources: Stephen Edwards, skipper of Bayesian (2015-2020), Scuttlebutt Sailing news, August 27, 2024, and Perini Navi web site
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Once the vessel was on her side, water

might also rush in from entry area at stern.
(image from itboat.com)
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Downbursts are a recognized threat to aviation but mostly ignored for ships
 Downbursts are caused by rapidly sinking air in very tall storm-clouds, usually cumulonimbus. When the descending
air approaches the surface of the earth, the flow of air spreads out horizontally. Downbursts cause wind-shear

experienced by aircraft. Macrobursts are large downbursts, microbursts are smaller than 4 km.

* Modern forecasting tools usually give ample warning for hurricanes. Downbursts give little or no warning.

Gust front

Image from noaa website
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Discovery of the downburst

Meteorologist Ted Fujita noticed a “starburst”
pattern of downed trees after a storm, similar
to the photograph of a corn field shown at
right. A tornado would leave a swirling
pattern.

Fujita’s discovery was met with great
skepticism. Meteorologists at the time M~ B e
believed that a downburst would have to e
lose its speed as it approached the ground.

The downburst hypothesis solved the
riddle of the crash of Eastern airlines
Flight 66 in June 1975 as it tried to
land.

Fig. 2.5 An overall view of a microburst that descended
on a cornfield near Gessie, Indiana on 30 September 1977.
Photo by Fujita - : :
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Fatal commercial aircraft accidents during landing and take-off led to federally-funded wind-shear
research projects (JAWS and NIMROD) in the 1970’s and 1980’s.

JAWS was conducted in Denver Colorado, May-August, in which 182 microbursts were detected.
The fastest recorded downburst was 36 m/s (about 72 knots).

Work by Fujita and others showed that downbursts could be as powerful as hurricanes and
tornadoes, with winds up to about 130 knots, or 70 m/s.

Underway sailing ships can be endangered by downbursts. If ships have even a short
warning a downburst is coming, they can prepare to “fall off” (turn downwind) or de-
power the sail (weather-vane into the wind)

While anchored with a retractable keel up, the stability of a vessel is reduced. A sudden strong
wind acting on a mast, rigging and ship superstructure could be more likely to roll an anchored
sailing vessel to her downflooding angle than if the retractable keel were down.

https://www.youtube.com/watch?v=25vA4QvaH1Q
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Downbursts are very difficult for sailors to spot:

A survivor from sinking of Pride of Baltimore recalls: “There was a line of squalls on the quarter and overcast skies
on the beam. None of them appeared unduly threatening.... We were suddenly hit by a wall of wind and water
with wind speeds of 70 knots and more... in what appeared to be slow motion the boat started laying over to port
and in less than 60 seconds the boat was over on her side”.

In this incident, as in other similar sudden-wind events
such as the sinking of S/V Albatross and Pamir, open
hatches allowed water to enter the vessels once they
were knocked down.
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DOWNBURST/MICROBURST DETECTION

* Downbursts/wind shear are routinely detected by Doppler weather radar at airports and on-board
commercial airliners.

* Ship radars are usually not Doppler type. While merchant ship radars detect the presence of storms and
can be used to estimate the severity of rainfall, there is no detection capability for downbursts.

e Off shore oil rigs use LIDAR (Light detection and ranging) to detect strong winds. LIDAR is believed
to be a better detector, but its greater cost and complexity may not be necessary for ships.
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The loss of the 316 ft sailing vessel Pamir in 1957 with Hurricane Carrie:

80 people died, with 6 survivors.

Gust knocked vessel down, and she never recovered.

Barley cargo may have shifted since cargo was not bagged, as was normally done on ship.

Hatches had been left open, permitting water in when vessel was knocked down.

Ship should have run with the wind instead of beating into it, since it was in “navigable semi-circle”

- Source: Tall Ships Down, by Daniel Parrot

Public Domain photo from Wikipedia
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WHALE STRIKES and retractable keels

 The merchant sailing vessel of the future may require movable surfaces such as retractable keels and fins which
extend below the vessel’s normal draft (Woodward, 1975), such as used in Bayesian and other large vessels. These
large appendages may be susceptible to whale strikes.

* While the steel hull of large modern ships may not be damaged by a whale strike, a fin extending
beneath the hull would be more vulnerable. Whales can weigh as much as 300,000 |b (148,500 kg).

Asgard Il, a tall ship training and cargo vessel, collided
with an unknown underwater object in the Bay of
Biscay. The collision resulted in the damaging of the hull
and sinking of the vessel (MCIB, 2010). No lives lost.

While it is not certain that Asgaard Il was sunk by a whale,
the Bay of Biscay is a world-famous whale watching
location.
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WHALE STRIKES, continued

* Whales do not appear to avoid areas of heavy ship traffic, and their reaction to approaching
ships is uncertain. Some whales descend, some don’t move. There is no apparent response
pattern, and loud sounds do not result in a flight response.

* Research suggests collisions may occur far more frequently than we know. Scientists estimate
only about 10% of strikes are reported.

* Whales are detectable on common sonar used to locate fish.

* A release mechanism on movable control surfaces should be considered, much like the kick-
up rudders on some catamarans.
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Recorded* Fatal Ship Strikes on Endangered Whales in CA
2007-2020

*Note: Recorded ship strike totals are considered to be minimum values, as carcass recovery rates for endangered
large whale species are low across regions (<1% to 17%) and gomparisans of average vessel strikes recorded
versus estimated totals from recent modeling work indicate that the rate of reporting for some species is
approximately 10%.

A blue whale surfaces in close proximity to a large container ship. John Calambokidis, Cascadia Research

Total Fatal Strikes (n=49)
By Species

@ Biue (n=13)
Fin (n=18)
. Humpback (n=15)
® sei(n=1)
@ sperm (n=1) 2Fl  NOAA National Marine Fisheries Service Strandings Database




LESSONS LEARNED

1: Doppler radar used on aircraft should be considered for sailing merchant ships for the detection of
downbursts and other sudden winds. Automatic sail de-powering should also be considered in the event of
a sudden winds with sails up.

2: The vulnerability of vessels at anchor with retractable keels raised should be studied, in the event of
sudden winds from downbursts or waterspouts.

3: Vents should be placed in a position where they are closer to amidships, in order to increase the
downflooding angle. Hatches and vents should have some automatic closing mechanism if water enters
from sudden rolls.

4: Sailing vessels with deep underwater appendages should use sonar to prevent collisions with whales.

5: “Kick-up” mechanisms should be studied for deep-draft underwater appendages.

6: We are all capable of making poor decisions. Discussion is needed dealing with how Captains and
management can make better hurricane decisions. More mandatory training? Use Al ?
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NEEDS
A regional dynamic techno-economical
scenario simulation model
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TRANSITION
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A dynamic techno-economic model of waterborne transport activities that allows to
evaluate sustainable fuel deployment strategies for a fleet or regional waterborne
network.

Characteristics and Objectives

= Model the current eco-system, used as benchmark

= |dentify region-specific possibilities to meet emission targets (for fleet and energy)

= Create and discuss alternative solutions

= Elaborate and play transition pathways scenarios

= Evaluate and identify challenges and needs for harbour infrastructure, energy,
operations and fleet

=  QOrganise workshops to elaborate regional strategy with all stak.eholders
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A regional waterborne ecosystem consists of 3 main actors

* Energy
production, storage and supply

* Infrastructure
harbours, waterways, bunker or charging locations

* Ships

operational profile, transport capacity, power systems

o~ | - N, /N N M |
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Harbour infrastructure
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Supply
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Waterborne transport activities

Routes

Ship characteristics
Transport capacity
Operational profile
Available power systems
Operational emissions
OPEX
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@ The model simulates the
evolution of the waterborne

regional network over time:
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Example on the Rhine region
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Harbours
- Loading / unloading goods & passengers ) @
- Bunkering capacity & type of energy

i e rd o, - N/ &}
] — LN A 2 A / |
M ) | ; - ,// AN ! , .:L ~




Region — waterways — harbours — energy E

BETTER SHIPS, BLUE OCEANS
RESOURCES

FOSSIL @
Coal

. ® ® @ ‘ Crude Oil

@) @ 6 Natural Gas
. ©

Energy and emissions BIOMASS
@ ® Bio Oil &
Crops Alcohol

ol
‘ ‘ ‘ A Bio Gas

‘ Waste

METAL . Metal

o powder

. (Fe, Na, ...)
D=

b # e—

RENEWABLES

ks
)

Solar @ e NS

Wind

Hydro (waves/dam) & Thermal




MARIN

BETTER SHIPS, BLUE OCEANS
RESOURCES

FOSSIL @
Coal
. 0 Crude Oil

Region — waterways — harbours — energy

i u h Natural Gas
BIOMASS
Bio Oil &
Crops Alcohol
@ 0 Bio Gas
Waste
METAL Metal
o o powder

RENEWABLES

[

Solar @ -—) o

Wind

Hydro {waves/dam) & Thermal

/ T
’ Ps .
/ e y s / N
.':I \ ./ . .
8 o | N % o .
. . . - \\\ - '\\\
\ | X o
N, P N




RESOURCES

FOSSIL @
Coal
‘ Crude Oil

—
0 MNatural Gas

A

BIOMASS
Bio Oil &
Crops Alcohol
@ 6 Bio Gas
Waste
METAL Metal
L=
Jt4e | powder
(Fe, Na, ...)
Q-
oy - e
RENEWABLES

Solar @ ‘ e
. Wind

Hydro {waves/dam} & Thermal

Region — waterways — harbours — energy

MARIN

BETTER SHIPS, BLUE OCEANS

122




Region — waterways — harbours — energy E

BETTER SHIPS, BLUE OCEANS

RESOURCES ENERGY CARRIERS

FOSSIL @ - -
Coal
a Crude Oil

—
0 MNatural Gas

™

DIESEL - MGO,ULSFO, HFO, Bio- & e-Diesel - C,,H,s
METHANE - LNG, CNG, GTL, Bio- & e-Methane - CH,

LIQUIFIED PETROLEUM GAS — LPG - C,Hj C.Hsg
BIOMASS

Bio Oil &

ETHANOL - C,H.OH

f “'I
: I I ‘l
I I ! I
I I ! I
I I ! I
I I ! I
I I ! I
o I ! ' I
4 I I ! I
b ! ! |
| o ! : |
g - :
® 1 '
L= | ) ] |
— oo g | DIMETHYLETHER - DVE - CHoOCH; |
@ 6 Bio Gas : A : - i : METHANOL - CH.OH :
Waste LG : : : :
t Q| I - AMMONIA - NH, |
METAL et Metal I oo : 1 |
|
« P ' HYDROGEN - H, :
— = 2 oAl !
n ! 5 | , 4 | Liquid Organic H, Carrier ¢35 - LOHC :
o ey o - L | Formic Acid &y CH,0, !
| o ! ! 11 Sodium Borohydride w53~ NaBH, i
I o
RENEWABLES v : N :
! , | METALPOWDER &y - Fe | .
I | : I
g @ - o — i ! ELECTRICITY (battery stored) - e | S~ \
. Wind ' f ! R 7 [ TR N
Hydro {waves/dam) & Thermal % \ .!' \\\ j.:// .
/ \ | \, e . I'. J. //
capture N ) C N 123




Region — waterways — harbours — energy E

BETTER SHIPS, BLUE OCEANS
RESOURCES ENERGY CARRIERS ENERGY CONVERSION
FOSSIL P AT T T T T T T TS ST m s m s s m - —— = ~ = -
@ codl ! : '! | i! Internal Combustion \I
: | I DIESEL - MGO,ULSFO, HFO, Bio- & e-Diesel - C;5H,5 : i Engine I
I
a Crude Qil : : I : : Compressed Ignited :
g | l I METHANE - LNG, CNG, GTL, Bio- & e-Methane - CH, 1 / Diesel based |
1 ! O i |
6 Natural Gas | " I | i |
: : : LIQUIFIED PETROLEUM GAS — LPG - C3Hg CuHyp : : :
L
9 ! ! I / Internal Combustion |
BIOMASS v | ETHANOL - C,H.OH | ! Engine :
I E [ : I : Sparke Ignited :
Bio Qil & I ! | Otto based
o Alcohol :> | ; : : : DIMETHYL ETHER - DME - CH;OCH; : : :
‘ : v : 1 | [ |
@ ﬁ ST s : A : - ! : METHANOL - CH;0OH : - : External Combustion :
Waste ] : : : : : Engine :
: 8 | | I AMMONIA - NH; I i Steam turbine |
METAL Metal a1 | 1 1 | e- production |
':_‘". powder : 1 : | [ |
o®4® o Now..) | = : : HYDROGEN -H, I : :
, Na, ... 15 | |
e g N - : E : : f : Liquid Organic H, Carrier ¢&g- LOHC : : T Egeﬁlagnilfom :
e NS P =2 1 I I 1 Formic Acid #%s- CH,0, | / e- production |
a i ! 1 i | [ |
| o ! 1_1 Sodium Borohydride ¥5y- NaBH, I : |
I ! I I
RENEWABLES ! - : : : : Direct electric drive :
: i : METAL POWDER {"5" - Fe | : from bgtter}f |
I ! I I
! ' | ELECTRICITY (battery stored) - &- ' | '
Ol TN I R L —— S S ;
Wlnd L J N e - e : :
B . ] | / .
Hydro {waves/dam) & Thermal SO ;l Sail / Wings / Rotor _:_ .f// . o _
Hzo C — N Wind N e e e e e e e -! //,/" \\‘ * ; .

capture o N /N




Region — waterways — harbours — energy E

BETTER SHIPS, BLUE OCEANS

POWER DISTRIBUTION

RESOURCES ENERGY CARRIERS ENERGY CONVERSION

& DRIVES
FOSSIL Pl AT T T T T T T T TS S m—m—m—m——— = ~ m————————————— -~ e
codl I : 'f | f Internal Combustion ‘: ! K
: I I DIESEL - MGO,ULSFO, HFO, Bio- & e-Diesel - C;5H,z : | Engine I : I
- a Crude Oil ] ' : ' ! i J ' |
| I i Compressed Ignited | I ; 1
=) : I ! METHANE - LNG, CNG, GTL, Bio- & e-Methane - CH, | [ Diesel based | . "“’"’““""’“““‘“"’“’"":
0 Natural Gas : : I | : : | ICE M s I
] : : LIQUIFIED PETROLEUM GAS — LPG - C;Hg C Hyg : = : :
I w '
9 ! ! I ! Internal Combustion | I
HIOMASS - | ETHANOL - C,H.OH ! : Engine I ! :
- I ; I
Bio Oil & | ° | ' : : 5’3’;‘;’"5&;‘;*;” : : !
Alcohol PO ! I DIMETHYL ETHER - DME - CH;OCH; | | I I
Crops R . e 1 [ | [ 1 | | Hybrid propulsion system |!
= R L . : | ! !
| 1 1 | I
@ ﬁ s : 5 | - : : METHANOL - CH;0H I - : External Combustion : | I
Waste o ! " . ' Engine '
L Q! i - AMMONIA - NH. | | Steam turbine ] | .
METAL ! I I ) i I
Metal = I i e- production | |
':*: powder 1 ! : | i 1 I I
ot (Fe, Na. ) , =z | : HYDROGEN -H, I : : I :
L= , O | I I I
=) - — | L . . Fuel Cells |
e o N "B | . : qumd_Orge!nlc H, Carrier g8y - LOHC : : LT, HT, PEM,SOFC : | I
& = o 2! ' 1 Formic Acid ¢$y- CH,0, l I e- production I | - . '
| = | [ X _ - | | 1 | Electric propulsion system ||
Q! Lo Sodium Borohydride ¢33- NaBH. I : I I :
o ! | | |
RENEWABLES i | | . ! | Directelectricdrive | ! : | L !
: I : METALPOWDER ¢33 - Fe " : from battery : I :
I
. |:> : | : ELECTRICITY (batt tored i : i | : Sail assisted :
Solar @ -—) o ! : ! (battery stored) - e : N A | .
. Wlnd 1 * J ‘\ _! 1 : 1 Direct Sail power :
L 1 1
I
—o I , : I .
Hydro {waves/dam) & Thermal SO | Sail / Wings / Rotor 1 | |
’ !
H,0 C — N Wind N e e - - - -




Region — waterways — harbours — energy E

BETTER SHIPS, BLUE OCEANS

%ﬂ Energy Carrier Energy Conversion Distribution & Drive Emission Lewt

' z \ —

—

, 0 ’-"‘-' ‘/
Hydroq(n / l wdlur Speet (ii(("é«‘.‘lr > - ““_,., - ’ \:‘:\ '/ : s 100N
\‘ :V = - o ‘ N \ : = - 2 = 5

s'
(& E NE()uu suokemedmrn 5@?
" . ‘-/
Me(mn(‘? [[eHE R tioke highespeedidiese)
/
'm . \ IEHSEATSILoke rndlu m
3 7 siMIEHElectrg pu ‘)IOI
Re ROl ' ” ‘\__l_lecm(lw * M , T

———
)

'/

/ snokt lowd sp(‘( red (dicse I)"_" Ny

NGO strokejmediunespee

ique fidiipe lm( (i G2 ———-——‘P e ry Fh i [_’u)pu Sk ,/'
—— —
None (Lonvelsmn)———-' B i,

None (Power DiSE &*t fve

, z S Hig
Etﬂl,(kuource) — I(l

IEHEICCIRIC COnSuni

iydiogen cataier

126



Resources
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Families of ship types sailing in the region, now

Characteritics

Power performance
Engine & power systems
Endurance (autonomy / amount of bunkered fuel)
Cargo capacity
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Fleet distribution & operations
- Routes — o #1
- Operationnal profile (speed, etc) Pons—
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Region — waterways — harbours — energy — emissions — ships - operations

Vessel types and
transport
journeys

21.9 billion tkm covered
by top 25 relations
Representing approx.
20% of transport
performance (tkm)

in Rhine countries

with main vessel types
and commodities.
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Match regional environmental conditions

Variation over 30 years (hindcast data)
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Set-up is ready to run the benchmark case:
current regional operations (business as usual)
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Monthly Bunkered Fuel (MWh)
January - 2020
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_h__::___ Sustainable Twins
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Setting-up alternative ships (sustainable twins)
- Engine type (ICE or Fuel cells / battery) — @ VA S RS———
- Energy carriers ——u
- Loss of cargo capacity © O A e A
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A_.:ﬁ___ Sustainable Twins
@) @ @)
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Setting-up alternative ships (sustainable twins)
- Engine type (ICE or Fuel cells / battery) e @ Y R———
- Energy carriers ——u
- Loss of cargo capacity © O A e A -
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Region — waterways — harbours — energy — emissions — ships — operations — environment — alternative solutio

Sustainable Twins

For each developed sustainable
alternative power system and energy
carrier, the increase in volume/weight is
taken into account and the reduction in
payload capacity calculated

Because of the lower energy density of
sustainable alternative energy carriers
(compared to diesel), sustainable twins
have less range, less cargo capacity, or
both (less...)
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Sustainable Twins
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A_.:ﬁ___ Sustainable Twins
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Setting-up alternative ships (sustainable twins)
- Engine type (ICE or Fuel cells / battery) e @ Y R———
- Energy carriers ——u
- Loss of cargo capacity © O A e A -
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Ship is in bunker

port

BETTER SHIPS, BLUE OCEANS

Is the ship older
than 55 years?

Assumptions:
Max ship age is 55 years
Min retrofit interval is 10 years

Scrap and newbuild

with the newbuild
option with the
lowest TCO over the
next 10 years

TCO is calculated by summing the
retrofit investment (CAPEX) with the
cost of the total energy

consumed (OPEX)

over a preset period of time

Yes
Setting-up alternative ship: L N
- Engine type (ICE or Fuel !
- Energy carriers |
_ ; Is the current fuel
Loss of ca rgo capacity type still available?
Yes
Is the last retrofit No
more than 10 years
ago?
¥ Y
. Find the propulsion
Continue .
: system with the lowest
pusiness as [« Ne YeS™> 7¢O for the next 10
years
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Set-up is ready to run alternative scenario’s

And here begins workshops / brainstorms / visions / discussions...
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Scenario: To Electric, Battery Swapping
January 2025

Monthly Port Fuel Consumption Monthly Total Fuel Consumption [MWh]
T
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Scenario: To Electric, Battery Swapping
January 2040

Monthly Port Fuel Consumption Monthly Total Fuel Consumption [MWh]

T
3 100000 !
1

= Rotterdam

Amsterdam 0000

Antwerp

=]

Karlsruhe Monthly CO2 emission [KTon]
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Duisburg 20
Cuijk 10
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Scenario: To Electric, Battery Swapping
January 2052

Monthly Port Fuel Consumption
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Monthly transport capacity [Relative to simulation start]
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% of sailing ships [Relative to simulation start]
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% of monthly bunker events [Relative to simulation start]
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Monthly + cumulative capital expenditure [M€]

< CAPEX -o= Cumulative CAPEX
1.2 ri6

0.6 K

o | W RET VPV Y WEE N BN I 5
2020 2025 2030 2035 2040 2045

Monthly + cumulative operational expenditure [M€]
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Total menthly eleciric energy demand [GWh] €
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Energy mixin 2049 per scenario

1400000
1200000
1000000
800000
600000
400000
200000
0 |
4 S 6. Full 8. Full H2
1. 2. . . battery = 7. FullH2 FC-
. . 3. Conservati  Innovative . -
Business  Conservati . electric FC- bunkering
Innovative  ve early early . .
As Usual ve sailing - | swapping and
adopter adopter ; .
swapping swapping
®mRen H2 bunkering 0 0 0 0 0 0 0 235248
M Fossil H2 bunkering 0 0 0 0 0 0 0 389
B Ren H2 Swapping 0 0 0 0 0 0 1161957 576786
W Fossil H2 Swapping 0 0 0 0 0 0 325
B Ren Methanol 0 0 293 7435 359167 0 0 0
B Bio Methanol 0 0 8256 2320 55590 0 0 0
Ren Electricity Charging 0 0 102 0 169581 0 0 0
Ren Diesel 0 0 31825 0 384453 0 0 0
Grid Electricity Charging 0 0 5570 0 23890 0 0 0
Bio LNG 0 0 0 8100 0 0 0 0
Ren electricity Swapping 85 1608 363 0 0 11596 0 0
B Grid electricity Swapping | 10271 0 21046 0 0 545511 0 0
W Fossil LNG 0 1212 0 2110 0 0 0 0
W HVO 20666 23948 0 1095509 0 0 0 0
W Fossil Diesel 1112590 1238059 1206008 145855 57132 0 0 4
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. 100%
[=n
H]
[}
3
2 80%
[}
=
[en}
E 60%
2 Promising alternatives in terms of
o . . v
5 Ao GHG emission reduction
W
=
L

B I
. _
4. | s

6. Full 8. Full H2
1. 2. . . battery = 7. FullH2 FC-
. . =) Conservati  Innovative . -
Business | Conservati . electric FC- bunkering
Innovative | ve early early . .
As Usual ve sailing - | swapping and
adopter adopter ; N
swapping swapping
W Ren H2 bunkering 0 0 0 0 0 0 0 235248
 Fossil H2 bunkering 0 0 0 0 0 0 0 389
W Ren H2 Swapping 0 0 0 0 0 0 1161957 576786
® Fossil H2 Swapping 0 0 0 0 0 0 325
B Ren Methanol 0 0 293 7435 359167 0 0 0
B Bio Methanol 0 0 8256 2320 55590 0 0 0
Ren Electricity Charging 0 0 102 0 169581 0 0 0
Ren Diesel 0 0 31825 0 384453 0 0 0
W Grid Electricity Charging 0 0 5570 0 23890 0 0 0
Bio LNG 0 0 0 8100 0 0 0 0
Ren electricity Swapping 85 1608 363 0 0 11596 0 0
@ Grid electricity Swapping 10271 0 21046 0 0 545511 0 0
W Fossil LNG 0 1212 0 2110 0 0 0 0
W HVO 20666 23948 0 1095509 0 0 0 0
W Fossil Diesel 1112590 @ 1238059 | 1206008 145855 57132 0 0 4
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5 100% Electricity issued from European

o > electricity mix (containing also fossil
‘g 80% based electricity production)

=

§ 60%

(a1

5

é 40% “biased” assumption: H2 produced
L » based on 100% renewable

L

20% I electricity...
. = '
4 5

6. Full 8. Full H2
1. 2. . . battery = 7. FullH2 FC-
. . =) Conservati  Innovative . -
Business | Conservati . electric FC- bunkering
Innovative | ve early early . .
As Usual ve sailing - | swapping and
adopter adopter ; N
swapping swapping
W Ren H2 bunkering 0 0 0 0 0 0 0 235248
 Fossil H2 bunkering 0 0 0 0 0 0 0 389
W Ren H2 Swapping 0 0 0 0 0 0 1161957 576786
® Fossil H2 Swapping 0 0 0 0 0 0 325
B Ren Methanol 0 0 293 7435 359167 0 0 0
B Bio Methanol 0 0 8256 2320 55590 0 0 0
Ren Electricity Charging 0 0 102 0 169581 0 0 0
Ren Diesel 0 0 31825 0 384453 0 0 0
W Grid Electricity Charging 0 0 5570 0 23890 0 0 0
Bio LNG 0 0 0 8100 0 0 0 0
Ren electricity Swapping 85 1608 363 0 0 11596 0 0
@ Grid electricity Swapping 10271 0 21046 0 0 545511 0 0
W Fossil LNG 0 1212 0 2110 0 0 0 0
W HVO 20666 23948 0 1095509 0 0 0 0
W Fossil Diesel 1112590 @ 1238059 | 1206008 145855 57132 0 0 4
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In scenario 5 & 8,
onboard energy capacity
was chosen to minimize
the number of additional
bunker events (maximize
range). This had a
drastic effect on the loss
of cargo thus transport
capacity, yielding a large
fleet increase need.
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@ Grid electricity Swapping 10271 0 21046 0 0 545511 0 0
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W HVO 20666 23948 0 1095509 0 0 0 0
W Fossil Diesel 1112590 1238059 | 1206008 & 145855 57132 0 0 4 150
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HVO / BIODIESEL + others

Best in class for limited operationnal change,
“Only” 2 times more bunkering events
Acceptable emission reduction: -75%
Limited renewable electricity need
Affordable Capex

But...

*  26% fleet increase

* No reduction of polluting emission (Nox, Sox, PM, ...}

*  GHG reduction only valid with good HVO!
* Availabity of such HVO?

1. 2.
Business | Conservati - .
As Usual s Innovative
W Ren H2 bunkering 0 0 0
m Fossil H2 bunkering 0 0 0
W Ren H2 Swapping 0 0 0
® Fossil H2 Swapping 0 0 0
B Ren Methanol 0 0 293
H Bio Methanol 0 0 8256
Ren Electricity Charging 0 0 102
Ren Diesel 0 0 31825
W Grid Electricity Charging 0 0 5570
Bio LNG 0 0 0
Ren electricity Swapping 85 1608 363
@ Grid electricity Swapping 10271 0 21046
W Fossil LNG 0 1212 0
W HVO 20666 23948 0
W Fossil Diesel 1112590 1238059 | 1206008

\4

4.

Conservati

ve early
adopter

2110
1095509
145855

5.
Innovative
early
adopter

0
0
0
0

359167 |

55590

169581
384453

MARIN

BETTER SHIPS, BLUE OCEANS

FULL ELECTRIC WITH BATTERY SWAPPING

Best in class for GHG emission reduction
Can up to -100% with only renewable e-

-95%!

Best in class for polluting emission reduction (Sox, PM, ...)

14 times more bunkering events

(battery swaping infrastructure to be deployed!)

50 GWh e- per month
20% fleet increase

p——
But...
[ ]
[ ]
[ ]
v
6. Full 8. Full H2
battery | 7. Full H2 FC-
electric FC- bunkering
sailing - | swapping and
swapping swapping
0 0 235248
0 0 389
0 1161957 = 576786
0 0 325
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
11596 0 0
| 545511 0 0
0 0 0
0 0 0
0 0 4
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Group characteristics
Catamarans LPP Breath Draft Speed Power Capacity | Capacity
[m] [m] [m] [knots] [kW] [Pax No] | [Cars No]
Group 1 74 25 4 40 28.300 1.103 207
Group 2 73 23 3 36 26.000 1.142 159
Group 3 65 26 2,6 35 14.600 700 75
Group 4 77 25 3,8 40 28.800 1.040 210
Group 5 36 10,4 19 35,4 4.550 339 7
Group 6 48 12,5 1,6 43 9.050 426 B
= RoPax Group characteristics
(medium) LPP Breath Draft Speed Power Capacity | Capacity
[m] [m] [m] [knots] [kW] [Pax No] | [Cars No]
Group 1 61,2 11,7 3 14 1.200 780 60
Group 2 61,26 14 3,8 13 1.900 453 150
Group 3 71,5 14,8 3 16 2.940 660 127
Group 4 74 14 3,7 15,7 3.650 562 106
Group 5a 5.300
Group 5b 77 14,7 3,7 17 2880 939 98
Group 6 86,4 16,8 4,2 17 5.400 867 190
i Group 7 65 22 5 18 8.300 1.225 175
Group 8 108 19 4,2 21,8 10.740 1.100 180
RoPax Group characteristics
(large) LPP Breath Draft Speed Power Capacity | Capacity
[m] [m] [m] [knots] [kW] [Pax No] | [Cars No]
) y Group 1 191,22 26,4 7,3 29 67.200 2.289 711
i - J Group 2 177,8 28 6,8 23 23.000 1.872 696
Group 3 133,3 21 5,2 26 31.800 2.024 424
Group 4 132 23 5,6 19,3 11.100 1.172 333
» 74 routes (60 served by only one of the selected vessels) Gmug 5 | 1606 257 65 > 24500 | 1854 ~80
» 843 transport journeys performed (62% of all services Group 6 114 19,2 5,1 22,5 13400 | 1.547 250
provided in 2021) Group 7 105 19 4,5 19 7.700 1.004 261457
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Monthly Fuel Consumption [MWh]
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GHG emissions: -47% -94% -95% -90% -75%
Monthly ren. e- demand: 12 GWh 33 GWh 104 GWh 14 GWh 21 GWh
Capex (30 years): 500 MS 220 MS 2000 MS 400 MS 380 MS
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Business As Usual Forced hybrid Forced electric and Bio-LNG Forced electric short routes, H2 Forced electric short routes,  Forced electric short routes,
long routes, Bio-LNG Bio-LNG long routes, Bio-LNG  hybrid long routes, Bio-LNG
catamarans catamarans catamarans

M Fossil diesel ®WHVO  mBiodiesel  mBio-LNG W Grid electricity swapping M Renewable electricity swapping ~ B Renewable H2 swapping B CCS H2 swapping
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THANK YOU!
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Driving Maritime Talent
through the
Marine Energy Transition

ECOLE NATIONALE SUPERIEURE MARITIME






HISTORY

* First School of Hydrography, created by Charles IX in
Marseille in 1571

* Creation of Ecole Nationale Supérieure Maritime (ENSM):
2010

* Public scientific, cultural and professional establishment
(EPSCP)

e Grand établissement, teaching and research missions

* Ministry of the Sea and Fisheries

* Head office in Le Havre

================================




1 SCHOOL, 4 LOCATIONS

More than 60 000 hours of classes/ year

| BASIC TRAINING (FI)

High school + 5 Engineer
o Sailing Engineer (dual purpose)

o Marine Engineer

High school + 3 (Bridge ou Engine)

| VOCATIONAL TRAINING (FP)

Navigating officers

CONTINUING TRAINING (FC)

sssssssssssssssssssss
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TRAINING COURSES



4 FORMATIONS INITIALES

Spécialité Génie Maritime Officier de 1°classe
Parcours EGN de la marine marchande
Parcours DMO Spécialité Navigant

@ Ingénieur ENSM
)

Dipléme @
d’ingénieur Di
510 stage entreprise d'études supérieures
w de la marine
g marchande
s9 ;:(
1
: - S}
[ Dipldme d’officier chef
‘Zt de quart pont et de capitaine 3000
ed s7 57 stage embarqué
$ () OCQPI - Cap 3000
3 Dipléme
Admission Grade
sur dossier sé d':.h;: ::ﬂs:" S6é licence

et entretien
Premiére
année de
formation
en cycle
ingénieur
reconnu par
la CTI,
master 1
scientifique
titulaire
DESMM

de la marine marchande

S4

MARSEILLE

Admission sur dossier et entretien : I Admission sur dossier
BUT, DUT, ATS, CPGE MP-PSI, et entretien pour

Licence scientifique, CUPGE provenance enseignement
’ supérieur

w
s
<
I
w
-

S3
I

S2
S1

Admission via concours CPGE PT
et entretien

Admission post bac
via Parcoursup

Admission post bac
via Parcoursup

S8

S7 Stage embarqué

Admission post bac
via Parcoursup

o]
-
<
2
-
Z
a

Dipléme professionnel maritime

Dipléme académique

Dipléme de chef mécanicien illimité

Dipléme d'officier chef de quart
‘machine et de chef mécanicien 8000kW

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu



DIPLOME
CONFERANT

DIPLOME

GRADE DE = D'INGENIEUR
ws INGENIEUR ENSM "
CONTROLE PAR LETAT

PAR L'ETAT

LE HAVRE

T sNAV

DEO1IMM

|
|
|
MARSEILLE |
|
|
|

NANTES

5GM

T

4 GM

|

3

.aparcoursup

Entrez dans l'enseignement supérieur

High school + 5 Engineer

BASIC TRAINING

1 Engineer diploma, 2 courses

Sailing Engineer (dual purpose)

Dipldme Etudes Supérieures Marine Marchande
On-board ship internships, including a full semester 7 during 4" year
Location : Marseille 3 years + Le Havre 2 years

Marine Engineer
- Eco Ship Management (EGN)
- Deployment and Maintenance of Offshore Systems (DMO)

Internships, including a full semester 10 at the end of 5" year

Location: Nantes

ssssssssssssssssssssssssssssssss



Monovalent Bridge Officer

BASIC TRAINING

Officier Chef de Quart Passerelle /

GRADE DE
LICENCE

s Capitaine 3000
OCQP-C3000

Location : Le Havre

On-board ship internships, including full semester 5 during 3rd

Le Havre year

sparcoursup

Entrez dans Uenseignement supérieur

ssssssssssssssssssssssssssssssss




Monovalent Engine Officer

FORMATION INITIALE

DIPLOME
CONFERANT
GRADE DE

Officier Chef de Quart Machine

OCQM-CM 8000 == Chef Mécanicien 8000

Location : Saint-Malo

On-board ship internships available

ssssssssssssssssssssssssssssssss




EDUCATIONAL EQUIPMENTS



Equipment adapted to international maritime
regulatory requirements (STCW) on the various
ENSM sites.

| SIMULATORSS

navigation, engine, loading, ...

| SHIP-IN-SCHOOL
| WORKSHOPS

Electric and diesel engines, Coupling benches, ...

| EDUCATIONAL INNOVATION

Pédagolab, Navirotheque

| CESAME

Sea Rescue and Survival Center

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu



STUDENT LIFE



\ |

i st T T

| T

| STUDENT OFFICES (Burals)
» Livening up student life
+ Keeping merchant navy traditions alive

* One bural per site

WOoLE NATIDNALE SUPERIEURE MARITI 8 I ACTIVITIES BY SITE

* Merchant Navy galas and student parties throughout the year

* Associative activities (orienteering, Laser Game, Olympiads, running
races, regattas)

* Choir and sea chanteys

================================




10 GOOD REASONS
TO COME TO ENSM

N°1 -Crew spirit

N°2 -Openness to the world / cultural richness

N°3 - Career prospects and development and rapid assumption of
responsibility

N°4 - Strict wage equality between men and women

N°5 - Attractive salaries

N°6 - Managerial responsibilities based on the values of our time:
energy transition, combating psycho-social risks, etc.

N°7 - Contributing to national sovereignty (French merchant fleet)

N°8 - The most beautiful office in the world and the opportunity to live
anywhere in the world

N°9 - Up to 6 months' vacation per year

N°10 - Year-round travel el M=




What drives
to ENSM
today ?






XLension juridique possible | 75,4
du plateau continental internationale

| (plateau continental juridique)

Ligne —

de base - — _
(laisse de basse Plateau /
mer ou ligne continental

de base droite) géologique Bord
du plateau
2500 m

Talus

Glacis
_ cédimentairo

What you can't see
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12 a 13 grammes de CO2 par tonne transportée
sur 1km, ce qui est tres faible par rapport au
routier (76g) ou a l'avion (+500g)

Consommation de
combustible et
gestion des déchets

&

3,5% des emissions de GES dans le monde et
16,5% en Europe.

Invasion
biologique

Bruit sous-marin

Pollution par les
hydrocarbures
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Addressing climate change

Over a decade of regulatory action to cut GHG emissions from shipping

Committee outputs

Energy efficiency

regulations

for ships: EEDI

and SEEMP

l

2011 | 2012|2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025

Implementation

3 IMO
GHG Study

EEDI and SEEMP

mandatory measures
and guidance

evidence-based
decision making

strategic objectives

! !

DCS regulations

1

EEDI Phase 1

Initial IMO Strategy on
reduction of GHG
emissions from ships

1

Fuel consumption
report to DCS

* Revised procedure on
assessment of impacts
on States

* Consideration of mid-
term measures

EEDI Phase2 data

Short-term
measure: EEXI, CII

4% IMO
GHG Study

Aggregated
results of the
2019 fuel

consumption

ship types

A

EEXI survey

2023 IMO Strategy
on reduction of
GHG emissions
from ships

* LCA guidelines
» Biofuels circular

Comprehensive
impact
assessment

Collection of
carbon intensity
data (ClI) for
existing ships

* Review of short-term

measure

« Approval of basket of

mid-term measures

EEDI phase 3 for remaining

ship types

EEDI Phase 3 for certain

* 40% reduction of CO per
transport work

* 5% uptake of zero-emission fuels,
striving for 10%

* Indicative checkpoint: 20%

reduction of the total annual GHG,

striving for 30%

230" INTERNATIONAL
@ MARITIME

ORGANIZATION

Net-zero GHG
emissions by or
around, i.e.,
close to, 2050

Indicative checkpoint:
70% reduction of the

total annual GHG,
striving for 80%
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)
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ON REDUCTION OF GHG

EMISSIONS FROM SHIPS

HEW RECUREMENTS UNDERMARPCOL ANNEX VIADCPTED BY COVERNMENTS
w A4 ~

IMOREGULATON DRIVES INNOVATION TO REDLXCE ﬂ
THE CARBON INTENSITY OF INTERNATIONAL SHFFING
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»

Improving energy efficiency to reduce
consumption and greenhouse gas emissions

-Optimizing ship shape to minimize drag

-Improved equipment: advanced navigation
system

-Optimizing all energy consumed on board

Eco-design of ships: manufacturing
processes and end-of-life management
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Energy and infrastructure

Less carbon-intensive fossil fuels
(LNG)

-Biofuels

-E-fuels (synthetic fuels made from

_j decarbonized electricity)

-Hybridization and electrification

« of ships and ports

-Vehicle propulsion and other
renewable energies
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What makes
that ENSM

will keep
students?
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ENSM

ECOLE NATIONALE SUPERIEURE MARITIME

=

ECOLE NATIONALE SUPERIEURE MARITIME
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-AXE1-

ENSEIGNER LA MER
DE TOUTES NOS FORCES

CONTRAT D'OBJECTIFS & DE PERFORMANCE
2023-2027



«-AXE 2 -
NATIONALISER LA FORMATION
SUPERIEURE MARITIME

CONTRAT OOMJECT S A OF MW ORMAMCE
A033- 200



-AXE 3 -

SOUTENIR LECONOMIE
DE LA MER

CONTRAT D'OBJECTIFS & DE PERFORMANCE
2023-2027



-AXE & -
MARITIMISER LES ESPRITS ET
DEVELOPPER LE SENS MARIN

CONTRAT DOSJECTIFS & OF PEarOaMANCE
X200



IMO Website

Raising crew awareness in wind propulsion for

commercial ships
a first online training to prepare for a safe and optimised operation

Wind propulsion is gaining credibility
> " within  maritime  decarbonisation
pathway. Therefore, dedicated crew

8 training is increasingly important to
i e enable pioneering projects and

The French Association Wind Ship,
the French Maritime Academy
(ENSM) and the company D-ICE
Engineering facilitated a fruitful
collaboration among Maritime

~ safely and

©Tom van Oossanen

shipping companies that use wind
propulsion. So their crew can meet
appropriate technical knowledge to
; sustainably operate
. wind-assisted and wind-powered
vessels.

CHOISIR LES INDUSTRIES DE LA MER

C'%A\/ Wind Shiu

FCOLE NATIONALE SUPERIEUI

Project 50% funded by French State within the framework of the workforce adaptation and
qualification — IFPAIl operation — Investment for the Future program by the Caisse des Dépéts

/

Academy, operators (shipowners,
charterers) and equipment
manufacturers. Therefore, creating a
quickly available and widely
accessible training course on wind
propulsion for ships.

—— 9o -ice

u ENGINEERING




I Train -

Three question
to open Grow
discussion

Convince
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BETTER SHIPS, BLUE OCEANS

A Crew-Centered Operational Approach
to Implement Sustainable Technologies
in Ship Design

Dr. Bas Buchner (President)
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MARIN: Maritime Research Institute Netherlands, Wageningen MARIN
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Model tests ocean liner ‘Oranje’ at NSMB/MARIN in 1937 MARIN




Wageningen B-series propellers MARIN
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Wageningen F-series propellers (updated B-series)




Cavitation reduction by air bubbles injection (SATURN) MARIN|
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Multi-objective optimization of Energy Saving Devices (CFD) MARIN|




‘FlowPike’ full scale Particle Image Velocimetry (PIV)




Full scale cavitation observation MARIN|

Trials and Monitoring 197



From Design to Operation with all our tools MARIN

CONCEPT 4=sss) DESIGN <) OPERATION

Computations Model tests Monitoring

CFD / Time domain Scaled reality Data science

198



MARIN
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Better Ships
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Use case: Zero emission freighter (hydrogen and wind assist)m




Use case: Zero emission freighter (hydrogen and wind assist)m
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Challenges: MARIN

Aerodynamic efficiency (including interactions)

Sail control (VPP), crew roles in sail handling, route optimization
Hydrodynamic design (slightly drifting, propeller inflow)
Seakeeping and stability in heavy weather

Course keeping and maneuvering (busy traffic, ports, channels)
Hydrogen availability, bunkering and safety

Hybrid power train dynamics and responsivity (compare to diesel)
Optimization wind and hydrogen propulsion (energy management)
Crew training for new complex systems
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Wind Propulsion from Concept to Operation MARIN

CONCEPT ¢=ssss) DESIGN <¢sss) OPERATION

Simulation Modeltests Monitoring

Computer Prototype Big data / Al
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CFD: Hydro/Areodynamics and Interaction effects MARIN

Influence interactions on Lift coefficient rotor

0.5
__{__-—+-....___h
0.0 f.‘/— e, s -
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g e
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~,
fvret S ™
13
| &
= -lo
[1v]
=
8 EXP Bordogna, Rotor A
~15 EXP Bordogna, Rotor B_|
CFD, Rotor A
CFD, Rotor B
20 . | | . | | |
0 20 40 60 80 100 120 140 160 180

WA [degree]
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Seakeeping, course keeping and maneuvering MARIN|

206

Dynarigs and Flettner rotors



Wind (Assisted Ship) Propulsion at Sea

Instrumented suction sails with lidar measurement of the wind field



Wind Propulsion from Concept to Operation MARIN

CONCEPT ¢=ssss) DESIGN <¢sss) OPERATION

Simulation Modeltests Monitoring

Computer Prototype Big data / Al
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Enough for these challenges? MARIN|

Aerodynamic efficiency (including interactions)

Sail control (VPP), crew roles in sail handling, route optimization
Hydrodynamic design (slightly drifting, propeller inflow)
Seakeeping and stability in heavy weather

Course keeping and maneuvering (busy traffic, ports, channels)
Hydrogen availability, bunkering and safety

Hybrid power train dynamics and responsivity (compare to diesel)
Optimization wind and hydrogen propulsion (energy management)
Crew training for new complex systems

209
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Many combinations possible to power a ship MARIN

POWER DISTRIBUTION

1
1
1
1
Direct Sail power 1
1
1
1

Wind :_{_’ N e _ |

Hydro (waves/dam) & Thermal

RESOURCES ENERGY CARRIERS ENERGY CONVERSION
— & DRIVES
-——— e - AR el S B S B -
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Source: https://sustainablepower.application.marin.nl/ 211



https://sustainablepower.application.marin.nl/

Use case: Zero emission freighter (hydrogen and wind assist)m
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Simple power train: diesel engine, gearbox, propeller MARIN
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Simple power train: diesel engine, gearbox, propeller MARIN

{—(E Iy

Gearbox ICE

8 -

Fuel Storage

[an4

214



Much more complex zero emission power train MARIN

Energy

- Management
-'4..|H.,._ {—{=HHICAe
Gearbox Gearbox Electro motor s
iteit
o - R
& 2 b o) (EB) [T (i) [03]
Fuel Storage i ICE Fuel cell Supercaps Batteries AC/DC converter
|
(@) s ]
Carbon Fuel Storage
Capture
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Challenges in Hydro-Systems Integration: MARIN|

Hydrogen availability, bunkering and safety
System complexity and maintenance

Hybrid power train dynamics and responsivity (compare to diesel):
Accelerating
Cavitation
Maneuvering
Seakeeping
Ventilation
Stopping

Crew training for new complex systems
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Cavitation tunnel (1939) became Zero Emission Lab (ZEL) MARIN
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Zero Emission Lab (ZEL): Engine room of the future




Much more complex zero emission power train

; Methanol H
Propulsion - Power suppliers -
control panel

N,

.'m";;“
Speed setpoint -
;—.‘\,—
[* Automatic e

p ICE direct

¢ ICE electric

[ Battery electric

¢ Off
Propulsion mode

S ———

Grid H;la_rogen
converter fuel cell

[

* ICE generator
* Zero emission
> Off

Elec. Power mode

Aux consumers

m—Electric power

Control

} ICE engine
l Power supply to the DC grid Gearbox

‘ Power consumption or charging

Power consumers

Hydro-systems integration: dynamics of the complete power train
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ZEL: Hydro-Systems integration and crew involvement




Hydro-systems integration in dynamic conditions

MARIN

c i B

paring Propulsion Control App!
blue: Speed Control & red: Torque Control
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ZEL: Hydro-Systems integration and crew involvement




First bottle of clean exhaust from ZEL’s fuel cell!

i 2
oo oo—r )
5l van MARINS 260 €%

23 mei 2024

— 0
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From Design to Operation with all our tools MARIN

CONCEPT 4=sss) DESIGN <) OPERATION

Computations Model tests Monitoring

CFD / Time domain Scaled reality Data science
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Hydro-systems integration including power train dynamics MARIN

CONCEPT ¢sss) DESIGN <ssm) OPERATION

Computations Model tests Zero Emission Lab Monitoring

CFD / Time domain Scaled reality Power train dynamics Data science
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A Crew-Centered Operational Approach...




Seven Oceans Simulator centre (SOSc) MARIN|

P PR

& _4 |
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Seven Oceans Simulator centre (SOSc)




Seven Oceans Simulator centre (SOSc) MARIN|

Safe and efficient maritime operations through the most realistic
simulations by bringing people and technology together
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The SOSc was opened by our King on May 28




Large Motion Simulator (LMS) MARIN

‘L‘

74 1-.—-:“‘
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Large Motion Simulator (LMS): 16 m diameter dome MARIN

Bridge 4,5 x 5,5 m (14 ton max), 6 degrees of freedom motion
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Crew-centered: step on board the ship before it is built




Crew-centered: step on board the ship before it is built




Full Mission Bridge MARIN
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Full Mission Bridge (16 m wide: domes around bridge wings)m

\

\
“ | SR _.’_\:

E (FTPER
oL

i

[l

i

R

[r—

Bl

N

238



Full Mission Bridge (16 m wide: domes around bridge wings)m

P | S 1 |
-

E(EEPER
LS NS5

-
e AT M v ol

239



Fast Small Ship Simulator (FSSS) MARIN
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Search and Rescue Boat on Fast Small Ship Simulator (FSSS)m
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Search and Rescue Boat on Fast Small Ship Simulator (FSSS)m




Maritime eXperience Lab (MX Lab): VR/AR & mixed reality MARIN|
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Maritime eXperience Lab (MX Lab): VR/AR & mixed reality MARIN|




Maritime eXperience Lab (MX Lab): VR/AR & mixed reality MARIN|




From Design to Operation with all our tools MARIN

CONCEPT 4=sss) DESIGN <) OPERATION

Computations Model tests Monitoring

CFD / Time domain Scaled reality Data science

246



Crew-centered Operational Ship Design: ZEL & SOSc MARIN

CONCEPT ¢sss) DESIGN <ssm) OPERATION

Model tests Zero Emission Lab Seven Oceans Simulator

Scaled reality Power train dynamics Human Factors
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Crew-centered: step on board the ship before it is built! MARIN
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Crew-centered: step on board the ship before it is built! MARIN




Crew-centered: step on board the ship before it is built!




BETTER SHIPS, BLUE OCEANS

A Crew-Centered Operational Approach
to Implement Sustainable Technologies
in Ship Design

Dr. Bas Buchner (President)



TRANSPORT A LA VOILE

CONFERENCE DE PRESSE

28 OCTOBRE 2024
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NOTRE MISSION -

Faire de la filiere vélique
un incontournable de la
scene logistique.
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TOWT EN 2024

e 2 navires entrés en opération en aout

e Anemos et Artemis : des voiliers-cargos
pouvant transporter plus de 1100 tonnes
de marchandises par trajet

e Decarbonation a hauteur de 95%

e Le Label Anemos a éte créé pour prouver
cette decarbonation

255



E
S

- . -

e T N T

T —
-

DES NAVIRES HRUTEMENT TECHNOLOGIQUES™
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. . Hydrogénération optimisée de
Une technologie de voile j g . b " .
L . "énergie de sillage, grace a des
inspire des courses de voiliers P
Py alternateurs, dynamos et hélices a

pas variable

systeme de gréement
semi-automatique et '

entiérement mécanisé

Penons électroniques pour un
réglage automatisé du gréement

systeme unique de dérives

Optimisation de a coque grace retractables et pivotantes

3 des études CFD avancées
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UN VOYAGE INRUGURAL
COURONNE DE SUGGES

e 3 escales: New-York, Santa Marta, Québec
e e Havre / New-York en 15 jours
e Des |leads time respectes

e Chargement/ déchargement
autonome et efficace

e Vitesse moyenne de 10 nceuds (record de
vitesse a plus de 16 nceuds battu)
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I.'AVENIH e La plus grande flotte au monde avec 8 navires
e Construction déja en cours au Vietnam sur les chantier Piriou

e |'ouverture de nouvelles routes

A AL uuu%ﬂ!&ﬁﬁ

]
Current fleet Extra units needed
Under construction Ta satisfy immediate demand

2X 22X
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UN 3= NAVIRE DEJA EN CONSTRUCTION : ATLANTIS
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HEEL LAYING CEREMONY

mﬂ SAILING CARGO VESSEL FOR TOWT (PROJECT: TOWT 3-8457)

, LE BAT KY TAU BUOM CHO HANG CHO TOWT (DU AN TOWT 3-CAST)
, , ﬂnnm{'- 07 Qetober 2024
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Céremonie de la pose de la quille au Vietham
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LA PAROLE A NOS PARTENAIRES :
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Martell Mumm Perrier-Jouet

Pernod Ricard



A N=oLINE

Presentation
Neoline

Wind powered cargo ship




Our vision

INDUSTRIAL
COMPETITIVE
ZERO EMISSION

Neoliner 136m roro

Capacity of 1200 ml or 400 cars or
5300 tons

80% to 90% of consumption
reduction

Z'N=OLINE

Hlustration Pierre Za



O u r Conventional
shipping

SOlUtIOﬂ 1005 _ @19KS

Decarbonized energy mix:

SLOW STEAMING

Pilot vessel: 80% to 90% of fuel 75%

WIND AS MAIN PROPULSION

Neoline
@ 11 kts

consumption reduction.

Mid-term objective: « quasi 0 50%

emission ».

25%

Auxiliary energy production

N =
&' N=OLIN= 264



THE PILOT
LINE

A new reqular transatlantic route

- Original secondary route
- Ideal from wind perspective

- New hinterlands proximities

Shippers are already involved :

Halifax

— 4

> -

New market, corresponding to a booming CSR demand

b
Il 31ml m@® |

N=O0OLINE

Signed transport Eeggg“ MANITOU croureBeNETEAU

commitments with: r GROUP MICHELIN

CLARINS LONGCHAMP @
Pamis REMY COINTREAU
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NEOLINER ORIGIN

Main particulars

Dimensions

Sail surface

Auxiliary propulsion

Commercial speed

Engine maximum speed

Air draft reductible to 136 ft
reductible to 16 ft

11 000 MT

13 (+12 passengers)

Specialized for oversized and heavy freights

Max height

Roro capacity

Cars capacity
Containers capacity
Breakbulk

Reefer plugs

Technical partners:

AR SEATERRmneue VMAURIC §8B0 - 1ce [RURE, -

sea novaotors

UNE SOCIETE DU GROUPE SNEF

' N=OLIN

Credits: Neoline / Mauric



FOCUS ON SOLID SAIL
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FOCUS ON ANT
DRIFTING FINS

Z'N=OLINE
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Lauching
Comissioning

NEOLINER ORIGIN
CONSTRUCTION

Construction’s steps

Start of 2025:
Summer 2025:
' N=EOLINE




contact@neoline.eu

www.neoline.eu

. . / p A
wWind Shlp = French
4 Armateurs / de France it
Maritime Cluster
Bound for Blue Growth

G'., ATLANPOLE
g Land of innovation
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Economic Viability Of Small
Sail Freighters In The
Northeast United States

Steven Woods
Center for Post Carbon Logistics



Small Vessel Sector:
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Less-than Truck Load (LTL) Shipping

Consolidates many small shipments into one large truckload.
Most loads of 1-4 pallets each.
Truck drives a route making pickups and dropoffs throughout.

Generally more expensive per unit than FTL (Full Truck Load)
shipping.

This is the most logical customer base for small sail freighters in early
stages.
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The Example Cargo
4x4x4 foot pallet of Malt.

Weight 2000 Lbs.
Stowage Factor 64 cubic ft per short ton.
Non-hazardous, non-alcoholic.

Delivered with no extra accommodations or requirements (lift
gate, etc)
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TABLE 2: ROUTE INFORMATION

Route Sailing Miles | Days Sailing | Voyages/yr | Truck Miles
Portland-Boston 100 | 320 107
Boston-New York 400 4 85 216
New York-Cape May 128 2 180 158
New Haven-Port Jefferson 23 1 350 117
Newport-Martha’s Vineyard 45 1 350 45
Newport-Block Island 26 1 350 4012
Buffalo-Albany (via Erie Canal) 363 5 36 288

Burlington-New York 267 5 36 298

(Via Champlain Canal)
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TABLE 1: VESSEL. ASSUMPTIONS

Assumption 15 GRT 25 GRT | 50 GRT 100 GRT Notes
Fuel per day 4 gal 4 gal 4 gal 4 gal At $5/gallon
Crew strength 2 4 6 6
Hold Capacity, ft3 480 960 2,240 4,480 64 ft® per pallet
Cargo Deadweight Tonnage | 7.5 15 35 70 Short tons
Construction Cost ($) 500,000 750,000 | 1,000,000 | 2,000,000
Length Over Spars (ft) 45 60 72 95 For docking fees

Values from Woods. “A Service-Pattern Sail Freighter: The Need for a Scalable Open-Source Sail Freighter Design.”
Proceedings of the Sustainability in Ship Design and Operation Conference 2023. Glen Cove: Webb Institute, 2024.
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TABLE 4: REQUIRED FREIGHT RATES BY FREIGHTER CAPACITY AND ROUTE

ROUTE 15GRT | 25 GRT | 50 GRT | 100 GRT
Portland-Boston 186.64 161.90 112.97 91.00
Boston-New York 549.02 477.33 305.40 157.08
New York-Cape May 294.95 258.33 172.25 130.95
Port Jefferson-New Haven 163.24 146.48 104.81 84.84
Newport-Martha’s Vineyard 163.24 146.48 104.81 84.84
Newport-Block Island 163.24 14648 104.81 84.84
Buffalo-Albany via Erie Canal 102772 | 69256 38598 338.55
Burlington-New York via Champlain Canal | L027272 | 69256 385.98 338.55

Notes: Non-Competitive routes are struck through. Competitive Rate is any within 10% of rate quoted above.
RFRs calculated using a 10 year payoff for vessel construction.
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Portland=-Boston:: . ssswwasssssmsssas
Boston=New Yorks ...
New York-Cape May: ........ceurrerene.
New Haven-Port Jefferson: ................
Newport-Martha’s Vineyard: ......
Newport-Block Island: ......................
Buffalo-Albany: ...,
Burlington-New York: ..o,

$ 222
$ 521
$ 285
$ 280

... $738

$ 130
$ 192
$ 470

($2.07 /ton-mile)
($2.41 /ton-mile)
($1.80 /ton-mile)
($2.39 /ton-mile)
($16.40 /ton-mile)
($3.25 /ton-mile)
($0.66 /ton-mile)
($1.58 /ton-mile)
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TABLE 3: BREAKEVEN LOAD FACTOR BY FREIGHTER CAPACITY AND ROUTE

ROUTE 15GRT | 25GRT | 50 GRT | 100 GRT
Portland-Boston 83% 73% 51% 41%
Boston-New York E&D 91% 597% 43%
New York-Cape May E&D 907% 607% 46%
Port Jefferson-New Haven 58% 527% 38% 31%
Newport-Martha’s Vineyard 22% 207% 15% 12%
Newport-Block Island E&D E&D 81% 657%
Buffalo-Albany via Erie Canal E&D E&D E&D E&D
Burlington-New York via Champlain Canal E&D E&D 81% 71%

Notes: Non-viable routes are struck through. F&D represents “Full and Down” condition.”
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Ithaca Trade Route Rates

64 Cubic Foot Pallet Of Malt Weiglung 2,000 Pounds.

$500.00

$400.00

$300.00

$200.00

$100.00

mm mm Jthaca-Allb == Tthaca-INYC

= m Jthaca-Syr == = Roch-Ithaca
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Trucking Rates from Boston to Provincetown
Highest and Lowest Rate for 64 Cubic Foot pallet of Malt weighing 2,000 Pounds.

mm [owest Rate == Highest Rate === wsss== 5 Year RFR

$850.00
:-';-!._-"'b'._n‘,‘.l-‘_
$65000 .*_ﬂ-"uq..: ..............
$450.00
$250.00
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; (2'0(} > * * ®* ! 7 \'x(""og N el
15& '95*06 @'\06 x\}‘& ‘S;Q, x'%Na
S Y&O«q@ & .
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Boston-Provincetown Price Competition Data
64 Cu Ft Pallet of Malt weighing 2000 pounds. 25 GRT/18 CDWT Schooner.

== [owest Rate == Highest Rate 5 Year RFR

$800.00 b o
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$700.00 .
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$400.00
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Trucking Rates From Boston to Gloucester
Highest and Lowest Rate For 64 Cu Ft Pallet of Malt weighing 2,000 pounds.

== [owest Rate == Highest Rate 5 Year RFR

$700.00
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Newport-Block Island Freight Rate Information

64 Cu Ft pallet of malt weighing 2000 lbs.

m= [ow Rate == High Rate

$500.00
$400.00 |

$300.00

$200.00

$100.00 U —

5-Year RFR
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Ferry Rates From New Bedford To Vineyard Haven.

2,000 b, 64 C.Ft Pallet. Boston - Vineyard Haven fare minus Boston - New Bedford fare.

mm FERRY == == 5Year RFR

$000.00
$800.00
$700.00
$600.00

$500.00

289



New Bedford-Hyannis Ferry Rates Window
64 Cu Ft 2000 1b pallet of malt. 10 CDWT Schooner, No Backhaul.

mm [ow Rate == High Rate w==m =m Ferry Rate 5-Year RFR

$600.00 -

$500.00

$400.00

$300.00

$200.00 |

o o 20 2% e 0%
a0 Y 00 00 00 O
q\ﬂ ﬁ\x\ Y . 3 6\«,\ q N
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This Presentation Uses 10 CDWT Vessels.
Routes Shown Assume Undercutting Trucks.
Detailed Financials Are Available By Request.

Route Analysis Available By Request.

Paper In Journal Of Merchant Ship Wind Energy.
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ASSUMPTIONS:

Ship Building: $500,000
Longshore Fee: $20/Port

Maintenance: 10%
gal/day@ $5
Marina Membership: $500/ ft
$9/ ft
No Backhaul Cargo
Vovages/Year

Insurance: 10%
Crew: 2

Fuel: 0.125

Port Fees:

130
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Spherical Cows Are Friends (Not Food)

Assume a spherical cow of uniform density.

...while ignoring the effects of gravity.

...In a vacuum.

CAN'T,
BREATHE .

bastard theoretical physicists

How do you sleep at night?
y P g 294




IS IT REALLY VIABLE?
Can Sailors Afford To Take This Job?

w US Average Income in 2022 was $51,123 (US Census Bureau)

w $200 Per Sailor Day gives approximately $52,000 per year on most routes.

w Additional $25 per sailor day for provisioning gives + $6,500 per year.
w Employee Ownership Program can increase sailor income, if available.

w A Living Wage for a single person in Boston is $62,000 Gross Income.
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TABLE 5: ANNUAL EMISSIONS IMPACT BY ROUTE IN METRIC TONS CO2

ROUTE 15GRT | 25 GRT | 50 GRT | 100 GRT

Portland-Boston 141.3 295.4 706.2 1,425.3
Boston-New York 69 151.6 372 757.5
New York-Cape May 113.6 241.6 582.8 1,180.1
Port Jefferson-New Haven 170.3 354.6 846 1705.9
Newport-Martha’s Vineyard 56.9 127.8 316.8 647.5
Newport-Block Island 49 112 280 574
Buffalo-Albany via Erie Canal 39.5 86.1 210.5 428.3
Burlington-New York via Champlain Canal 41.1 89.4 218.1 443.4

One Vessel Working Each Route: | 680.7 1,458.5 3,478.4 7,162

This table gives the maximum carbon emissions each sail freighter can save by mode shifting cargo away from

trucking.
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SAIL FREIGHT PROJECT FINANCIAL PROJECTIONS

ROUTE: Boston-Provincetown
VESSEL: Pinky Schooner Maine
YEAR 1: 130x 2-Day Voyages, Full & Down, 10 CDWT. No Backhaul.

Line-Item Quantity Per Unit Amount
Stock, Sold By Shares 5,000 $100.00 500,000.00
Honorary Shipowner Certificates - $35.00 -
Gross Revenue, Freight 1,300 $310.86 404,117.45
Gross Revenue 904,117.45
Vessel Purchase 1 $500,000.00 500,000.00
Insurance 1 $50,000.00 50,000.00
Crew Labor, per Sailor Day 520 $200.00 104,000.00
Winter Storage, per ft 44 $0.00 -
Seasonal Marina Slip, per foot 44 $500.00 22,000.00
Fuel, Diesel, Per Gallon 33 $5.00 162.50
Maintenance Costs 1 $50,000.00 50,000.00
Provisioning, per person-day 520 $25.00 13,000.00
Longshore Labor Fees, per pallet 2,600 $20.00 52,000.00
Port Fees Per Day 235 $0.00 -
Total Expenses 791,162.50

Net Income

112,954.95
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SAIL FREIGHT PROJECT FINANCIAL PROJECTIONS

ROUTE: Boston-Glocester
VESSEL: Pinky Schooner Maine
YEAR 1: 160x 2-Day Voyages, Full & Down, 10 CDWT. No Backhaul.

Line-Item Quantity Per Unit Amount
Stock, Sold By Shares 5,000 $100.00 500,000.00
Honorary Shipowner Certificates - $35.00 -
Gross Revenue, Freight 1,300 $184.66 240,058.43
Gross Revenue 740,058.43
Vessel Purchase 1 $500,000.00 500,000.00
Insurance 1 $50,000.00 50,000.00
Crew Labor, per Sailor Day 520 $200.00 104,000.00
Winter Storage, per ft 44 $0.00 -
Seasonal Marina Slip, per foot 44 $350.00 15,400.00
Fuel, Diesel, Per Gallon 33 $5.00 162.50
Maintenance Costs 1 $50,000.00 50,000.00
Provisioning, per person-day 520 $25.00 13,000.00
Longshore Labor Fees, per pallet 2,600 $20.00 52,000.00
Port Fees Per Day 365 $0.00 -
Total Expenses 784,562.50
Net Income (44,504.07)
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SAIL FREIGHT PROJECT FINANCIAL PROJECTIONS

ROUTE: New Bedford-Martha's Vineyard
VESSEL: Pinky Schooner Maine
YEAR 1: 130x 2-Day Voyages, Full & Down, 10 CDWT. No Backhaul.

Line-Item Quantity Per Unit Amount
Stock, Sold By Shares 5,000 $100.00 500,000.00
Honorary Shipowner Certificates 0 $35.00 -
Gross Revenue, Freight 1,300 $646.86 840,920.60
Gross Revenue 1,340,920.60
Vessel Purchase 1 $500,000.00 500,000.00
Insurance 1 $50,000.00 50,000.00
Crew Labor, per Sailor Day 520 $200.00 104,000.00
Winter Storage, per ft 44 $0.00 -
Seasonal Marina Slip, per foot 44 $500.00 22,000.00
Fuel, Diesel, Per Gallon 33 $5.00 162.50
Maintenance Costs 1 $50,000.00 50,000.00
Provisioning, per person-day 520 $25.00 13,000.00
Steamship Authority License, 20% 1 $168,184.12 168,184.12
Longshore Fees 2,600 $20.00 52,000.00
Total Expenses 959,346.62
Net Income 381,573.98
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SAIL FREIGHT PROJECT FINANCIAL PROJECTIONS

ROUTE: New Bedford-Martha's Vineyard
VESSEL: 50 GRT Schooner with 6 Crew
YEAR 1: 130x 2-Day Voyages, Full & Down, 35 CDWT. No Backhaul.

Line-Item Quantity Per Unit Amount
Stock, Sold By Shares 10,000 $100.00 1,000,000.00
Honorary Shipowner Certificates 0 $35.00 -
Gross Revenue, Freight 4,550 $646.86 2,943,222.10
Gross Revenue 3,943,222.10
Vessel Purchase 1 $1,000,000.00 1,000,000.00
Insurance 1 $100,000.00 100,000.00
Crew Labor, per Sailor Day 1,560 $300.00 468,000.00
Winter Storage, per ft 72 $0.00 -
Longshore Fees 9,100 $20.00 182,000.00
Fuel, Diesel, Per Gallon 260 $5.00 1,300.00
Maintenance Costs 1 $100,000.00 100,000.00
Provisioning, per person-day 1,560 $25.00 39,000.00
Steamship Authority License, 20% 1 $588,644.42 588,644.42
Port Fees Per Day 365 $648.00 236,520.00
Total Expenses 2,715,464.42
Net Income 1,227,757.68
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SAIL FREIGHT PROJECT FINANCIAL PROJECTIONS
ROUTE: Boston-Provincetown
VESSEL: Salvage 36 ft Sailboat
YEAR 1: 130 Voyages, Full & Down, 5 CDWT.

Line-Item Quantity Per Unit Amount
Stock, Sold By Shares 250 $100.00 25,000.00
Honorary Shipowner Certificates - $35.00 -
Gross Revenue, Freight 650 $310.86 202,058.72
Gross Revenue 227,058.72
Vessel Purchase 1 $25,000.00 25,000.00
Insurance 1 $2,500.00 2,500.00
Crew Labor, per Sailor Day 520 $200.00 104,000.00
Winter Storage, per ft 36 $0.00 -
Seasonal Marina Slip, per foot 36 $500.00 18,000.00
Fuel, Diesel, Per Gallon 33 $5.00 162.50
Maintenance Costs 1 $2,500.00 2,500.00
Provisioning, per person-day 520 $25.00 13,000.00
Longshore Labor Fees, per pallet 1,300 $20.00 26,000.00
Port Fees Per Day 365 $0.00 -
Total Expenses 191,162.50
Net Income 35,896.22

301



BOSTON-PROVINCETOWN ROUTE
EXTERNALITY BALLANCE SHEET: FINANCIA O2e
OPERATIONAL SCOPE 1 Y.

BENEFITS, USD BILJI'TES; USD

e

Transportation $66,239 F Bu $725 q
Road Maint. Avoided 5,500 Co® uels Burned 98.8 ‘
Physical Plant & Egffip $0.80 ysical Plant & Eqiag 19.72
. Inventory $0.00
. $71,740.22 TOB LPABRTIES: $1,144.05

BILITIES, CO2e

sportation Progftlsion Fuels 329.16
NON-GHG Values ooking Fuel Burned 135.60
Physic t & Equi Physical Plant & Equip 54.32

ry Inventory
L AS : 30,054.35 TOTAL LIABILITIES: 519.08
NOTES:
Cooking Emissions will be eliminated through Upgrades to electric auxilary propulsion will
electrification within two seasons. eliminate propulsion liabilities in future years.

Benefits of 0-Carbon Last-Mile transp. exclusive. Social Cost of Carbon per EPA: $2.204/kg CO2e. 302
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Steven@PostCarbonLogistics.org



Construction/Testing
of the Suction Wing
for the Generation of
High Lift Forces

MIDN Robert Novak 1/C, Prof. Sergio Perez
United States Merchant Marine Academy




Introduction

Suction Wing technology is a unique way to
generate high lift forces for maritime vessels

We assembled and began preliminary tests on a
suction wing device, for generating high lift forces
on ship-mounted wing-sails.

Our model wing's preliminary results showed a
marked increase in aerodynamic lift force, as
compared to without suction

The wide scale use would reduce oceangoing
vessel fuel consumption (15 - 35%) and air
emissions
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Background

Based on 1900’'s concept of Boundary Layer
Suction

Jacques - Yves Cousteau
Suction allows use of thicker airfoils at high
angles of attack

Size of masts and sails can be reduced

Reduces fuel consumption and air emissions

The Alcyone (1985)

suction dots/

suction chamber
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Operating Principle & Hypothesis

- Flettner
- sRotor 2010

10 v -

—
- — Flettner Rotor

Nl 1922
| — -

Cousteau

o= Q
— ““turbo sail
:'8- B 2
- h
5 - - Wing sail with suction
i ™ = — Japanese
folding stiff sail
= Wing sail M
-

6

\ Bermudaand

gaff sail

/ Square sail
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Visual Analysis
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- Cart Modeling Process

- 3D printed, large, hollow model of an airfoil
- Open slits on the upper camber, towards the airfoil trailing edge.

- Wooden cart with rotating disk (fixed lifting body for the airfoil) when testing forces

- Adhesive to the airfoil onto a rotating disk




Suction Wing Design
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Suction Modeling Process

Directioned PVC elbow pieces through the cart and disk
Flexible rubber hosing: Venturi Tube -> Elbow Piece

Man-made Manometer on Venturi tube
- Pressure Differential -> Volumetric Flow Rate & Air Velocity

Flexible Silicone Nozzle taped: Shop vacuum -> Venturi tube

Hand-Held vacuum soldered to PWM and power supply
- Amps and Volts measured
- Low air flow rate (head losses)

Larger 5 HP shop vacuum
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Exhibited Performance
Vs. Cousteau Report

AR =2.80<4.0

Cq = Q/(S*W) = 0.0391
Q = volume flow rate of air
S = Wing Surface Area
W = Average Wind Speed

Wind Tunnel Performance (red line)
Cousteau Results (black lines)
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induced parabola: ARe = B

Lift/Drag Coefficient
Relation Vs. Cousteau

ARe =5.6 < 8.0

Majority of drag was induced drag
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Limitations

-  Low Reynolds Number
121,987 vs. 300k - 500k

- % Error Measurements
- Low Quality Force Gauge

- Different Precision Tools
- Slow Motion Movie

318



~  Acknowledgements

Christopher Soo & Prof. Garofalo, 3D printing of wing model
Richard Crook, Lab Director
Prof. Nigro, Department Head

Foundation Cousteau and Windship Propulsion 1980 - 1985 System Cousteau - Pechney, Journal of Wind
Engineering and Industrial Aerodynamics, 20 (1985).

Contact Information




Thank You

Questions?



Preliminary Design Report for
Hydrogen Feeder Vessels
Transporting LH2 from Offshore
Windfarms to Shore Reception Facilities

JOHN DONNELLY, SEAMUS O’NEIL, CHRISTOPHER CHU, BRIDGET DONOVAN, & KENNETH
JONES

ASST. PROFESSOR HARIHARAN BALASUBARAMIAN

Department of Naval Architecture and Marine Engineering
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The pipelines or cables typically used to transport
power from wind farms to shore create limitations

for deepwater wind farms

TIRTIRIIIN o

[3]

Undersea cables typically
cost $2.5 million/km or
more

Undersea pipelines cost
$4-7 million/km [2]
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Despite the challenges of transporting and storing
hydrogen, it can be immensely useful and a fuel

source. , -

N
=
=

e

" LIQUIFIED HY DRy %
g J.&g‘f// FLAMMABEGIS =
-

Power required to produce hydrogen: 42-60 kWh/kg
Power required to liquefy hydrogen: 11-15 kWh/kg
Density of hydrogen gas: 0.09 kg/m?3[4,6]
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150,000m? vessel

Length on DWL: 271 m
Beam: 48 m

Draft: 8 m

Speed: 18 knots
Displacement: 71680 tons

50,000m? vessel

Length on DWL: 169 m
Beam: 30 m

Draft: 6 m

Speed: 15 knots
Displacement: 21864 tons
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The ships utilize a dual-fuel-electric

propulsion system

Ship

150,000 m? vessel

50,000 m2 vessel

Required Power (approximate) [11]

25 MW

2 MW

Generators [12]

9H54DF (12.6 MW)

Wartsila 8V31SG

Installed Power

51 MW

17 MW

EEDI (approximate)

1.7

0
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The 150, OOOm3vessel can complete atripin 8

days

Marine Termina

Offshore Wind Lease
Areas

- NYSERDA Awarded
Offshore Wind Projects
PSEG-LIPA Contracted
Offshore Wind Projects
(® Proposed Port Facility

. Proposed Point of
Interconnection

Final Transmission

Routes

0 15  30Miles
] ,\

Evolution Time to Complete (hours) Hydrogen burnt (m3) | Diesel Burnt (tons)
Travel 76 930 5.1
Loading at Farms | 75 1900 7.4
Offloading 40 670 2.6
TOTAL 191 3050 15
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The 50, OOOm3vessel can complete a trip in

6 days

P S

]

0

Offshore Wind Lease
Areas

NYSERDA Awarded
Offshore Wind Projects

PSEG-LIPA Contracted
Offshore Wind Projects

Proposed Port Facility

Proposed Point of
Interconnection

Final Transmission
Routes

15  30Miles ’\

Evolution

Time to Complete (hours)

Hydrogen burnt (m?3)

Travel

96

384

Loading at Farm

27

150

Offloading

27

152

TOTAL

150

687
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Application

Transport
Method

Capital
Cost

Required
Freight
Rate

Multi-Farm Servicing

150,000m3 Gas Electrical
vessel Pipeline Cable
$258M $2000M $805M

$3.04/kgto  $0.60/kgto  $5/MWh
$4.34/kg  $0.86/kg

Single Farm Servicing

50,000m3
vessel

$122M

$0.29/kg to
$0.42/kg

Gas
Pipeline

$600M

$1.68/kg to
$2.40/kg

Electrical
Cable

$300M

$11/MWh
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Future Works:

Maneuvering study and characteristics, including additional power and
regulatory requirements for dynamic positioning

Detailed study on regulatory compliance

Further Hydrostatics properties discussion

Strength analysis

Investigation into the potential of a dual-purpose LH2 carrier/ offshore
supply vessel

Investigation into the potential affects of single-point mooring systems on
the feasibility of using feeder vessels to transport hydrogen from windfarms
to shore.

Selection of potential shipyards

Please direct questions to:

Seamus O'Neil seamusone.21@sunymaritime.edu
John Donnelly johndon.21@sunymaritime.edu
Kenneth Jones kennethjon.21@sunymaritime.edu
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Owner
Requirements

* Max DWT of 450,000 carrying
iron ore.

* Must transport 1,000,000 MT of
iron ore between Brazil and
Japan within a year.

* |Includes the use of wind
assisted ship propulsion
(WASP) to reduce emissions.
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Iron Ore Max Capacity 450,000 DWT

Length Overall 365 m
Length Between Perp. 360 m
P . . l Beam 68 m
i Il nCIp c Design Draft 23 m
Dimensions Depth 30.6 m
(Preliminary -8 >47 '
. . B/T 2.82 -
ship design) B/D 214 _
L/D 11.8 -
Displacement @DWT 450000 515944 MT
Cb 0.895 -
Design Speed 14 Knots
Fn 0.121 -

S-L ratio @14 kt 0.737 -
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Construction Costs

(Carreyette's method)

Steelwork labor coef., A' 4,160
Steelwork material coef., B' 624
Outfit labor coef., C' 46,795
Outfit material coef., D' 10,399
Machinery labor coef. 1,040
Machinery material coef. 4,160
Steelwork labor cost (million S) 44.8
Steelwork material cost (million S) 32.01
Outfit labor cost (million S) 8.91
Outfit material cost (million S) 18.42
Machinery labor cost (million S) 5.53
Machinery material cost (million S) 22.13
Total ship building cost (million $) 131.81

 Carreyette method used to find
coefficients/ costs.

* Valemax roughly 110 million
dollars to build.

* Planning to build ship in South
Korea at Daewoo Shipbuilding and
Marine Engineering.
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Operating Costs

e Costof lube oil-1100 $/MT

* Port costs are rough estimate-Contact
port authorities for exact information.

* Dockage due =.2% * Gross tonnage
* Portdue =L*2$*days

» Cargo handling=6$ per MT (Use crane
system)

Annual fuel oil cost (million $)

Annual lube oil cost (million $) 0.1456
Annual port cost (million $) 12.53
Annual running cost (million $) 7.500 ‘
Total operating cost (million $) 34.41
Annual capital charges (million $) 7.591 ‘
Total annual cost (million $) 42.001
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Fuel costs breakdown Brazilto Japanto

Japan Brazil
. Cost pertonne Brazil, 641 Japan, 653

* 3round trips ayear @333333 DWT VLSFO dollars dollars

4,742,118 dollars a round trip )
Operating Loaded 162.1 Unloaded

* 14,226,353 dollars a year for fuel cost conditions g/kwh 155.2 g/kwh
One way 3743.953 3586.897
consumption tonnes/trip tonnes/trip
Cost per trip 2,399,874 2,342,244

Dollars Dollars
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Operations

Brazil to Oita in Japan.

e Carrying 333,333 DWT to follow port
restrictions. (Japan port Oita limiting DWT).

* Minimum operating days required to ensure 1
millions MT of iron ore delivered in a year.

Operational data

Nautical miles per round trip

Annual operating days

Proportion of miles in ballast (%)
Average loaded cargo / maximum (%)
Load factor (%)

Average speed (weighted average)
Steaming days per round trip

Port days per round trip

Total days per round trip

Round trips per year

* Traveling from the ports of Ponta da Madeira,

24060
230

50
0.7333
0.3666
14.5
69.13

76.13
3.020
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Powering & Engine Selection

* Engine selected-WinGD X72-B 7 cylinder to satisfy
results from CFD

* Engine is specifically designed for larger
commercial vessels with EEDI regulations and
operational flexibility in mind. Two stroke, low
speed diesel engine.

* Designed for reliability and long periods of time
without maintenance.

Bore Diameter

Piston Stroke

Shaft Speed

Fuel Consumption rate
Mean Effective Pressure
Weight Engine

Power Output

Specific Power

720 mm

3086 mm

66-89 rpm

162.1 g/kWhr

21 Bar

642 MT
15,000-27,440 kW
18.6 KW/MT

344



Weights and centers - Lightship
Category Weight, MT VCG, m above BL Wt*VCG, MT-m
Weights (lightship items)
Hull Structure 49474.457 13.774 681441.382
Super Structures 0 17.5 0 * The lightship weights are calculated using the
Deck Houses 1150.288 43.396 49917.895 methods outlined by Watson.
Structure Sum 50624.745 14.447 731359.276
Outfit 2663.424 32.1 85495.910 * The structural weight obtained by equipment
, _ number estimate.
Special Outfit 0 0 0
Machinery:
— . * These weights represent a ship without
OPESIon ' deadweight items such as cargo, required fluids,
Remainder 882.507 crew and other items not present in lightship.
Machinery sum: 2361.398 12.7167 30029.155
Margin 1112.991 15.218 16937.687
Lightship Sum: 56762.558 15.218 863822.029




Weights continued (deadweight example)

l[t)::i‘:"eight Weight, MT VCG, mabove BL | WT*VCG, MT-m
Cargo DWT 333333 16.321 6983184.091
Fuel QOil 8731.124 1.55 13533.242
Lube Oil 43.843 27.6

Ballast Water 0 0 0
Fresh Water 379.464 22.95 8708.705
Crew and Effects 5.1 30.6 156.06
Provisions 22.321 30.6 683.0357
Deadweight sum: 342181.853 20.47526798 7006265.135
Total Ship weight: 399277.411 18.850 7870087.163

The deadweight items
are calculated including
fuel oil, lube oil, fresh
water, crew and effects,
and provisions.

Each items weight in MT
multiplied by the VCG
gives us the moments.

These calculations
represent a carrying
capacity of 333,333
DWT.

346



EEDI

* As part of the owns requirement, the ship is

intended to comply by use of WASP.
YDy Mammoth Max EEDI
* IMO aims to reduce fuel consumption on (g(CO2))/ton-mile
ships and greenhouse gas emissions.

Phase-1 DWT regression 1.934
* To see which WASP arrangement is best, we TEEEIEE
analyze four arrangements, one without Phase-3 Required EEDI 1.354
wasp.
* We are yet to Calculate an EEDI bespoke to ,
each WASP arrangement. Phase-3 Ideal attained EEDI  1.286
EEDI calculated (prior to 1.948

WASP installation)
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Fletther Rotors
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Rigid Salls




Flettner Rotors & Rigid Sails




Future Requirements

* Produce and Prepare foam hull model to validate CFD results.
* Derive a method to account for wind speed and direction along various routes.
* Produce calculations of WASP performance.

* Calculate a refined a ROl calculation for each arrangement considering WASP
performance.

e Strength and stress analysis on ship.
* Determining Maneuvering capabilities.

* Researching into additional green energies to further reduce EEDI come the
occasion which WASP is not enough.
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A Novel Application /\

Al for Liquid Cargo -
Loading and Discharge
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Overview

Using artificial intelligence and smart sensors to
optimize marine liquid cargo transfer operations can
improve efficiency, reduce the incidence of
unintentional cargo discharge, and mitigate cargo

losses.



Components of Liguid Cargo Transfer

Ballast Liquid Inert
Water © Cargo © Gas

This presentation focuses on the liquid cargo
aspect of cargo management



Sensors

System Schematic

 §

A 4

Microprocessor

\ 4

Cargo
Control

Console

Al
Software

\ 4

Actuators




Smart Sensor 101 User

Interface

Signal
Conditioning
+ Self
Diagnosis

Analog to
Digital
Conversion

Application Communication

SEmEEg Lt Algorithms Unit

Smart Sensor Benefits
® Self-diagnostics predict future
performance of the sensor
e Simplified wiring
® Remote monitoring and
troubleshooting



\ Data Flow

Smart Sensor
Data

integrated
throughout the
cargo handling
system, providing
continuous feedback
on variables such as
tank levels,
temperature,
pressure, flow rates,
and valve statuses

Input
Variables

Drafts
Temperature
Gas Profile
Fill
Percentage
Valve Status
Pump Status
Pressure

Algorithm

Flow
Calculations
Throughput
Determination
Pressure
Trends

Al Decision
Making
Interprets Actuators
algorithmic implement the

outputs, decides step-by-step plan
optimal method for by mechanically
achieving manipulating
loading/discharge, valves and pumps
sends action

information to the

actuators



Flow Calculation

(Simplified)

Flow Rate

Q = Flow Rate
P = Pressure
r = Pipe Radius

8nl

n = Fluid Viscosity

L = Pipe Length

Q
Pressure P
Pipe Radius r
Fluid Viscosity .
Pipe Length |
Density 0
Specific Gravity G
Pressure Drop AP
Flow Coefficient Cv
Temperature T
Inlet Diameter d
Stem Flow
Viscosity Fv
Reynold’s Number | Re or Nr
Kinematic Viscosity | Vcs
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Applications

Ol Efficiency and Optimization of Cargo Operations

O2  Environmental Harm Reduction

O3 Enabling Full Vessel Automation

Q4  Cargo Shortage and Loss Mitigation



Q Efficiency and Optimization of
Cargo Operations‘

Uninterrupted

Supply Chain
Lower
Operational
Expenses
Current Lay
Time
Lower
22.56 q
Turnaroun
Hours Times Positive
More Relationships
Voyages with Shippers

v



Environmental
Harm Reduction

Human error accounts for
90% of oil spills in the
marine environment

Causes of human error in marine pollution incidents
during the loading/discharge of liquid cargo

Miscommunication

Fatigue

Procedure Fault

Absence of Work Plan

Deficiency of
Concentration

Deficiency of Situational
Awareness




Q Enabling Full Vessel Automation

Autonomous Autonomous
Steering Docking
Systems

Autonomous Autonomous
Fueling Cargo
Management

Necessary
components of
full vessel
automation



©

No shipboard artificial intelligence augmented system may take the

onus of watchstanding from the seafarer as it is mandated by law.

It is essential to note that while artificial intelligence can enhance marine
transfer operations, human oversight and intervention should still be
Mmaintained, particularly for critical decision-making and handling
unforeseen circumstances. The use of artificial intelligence in this context
should aim to augment human capabilities and enhance safety rather

than replace human roles entirely.



Cargo Shortage and Loss Mitigation

In-transit
Cargo Loss

Discrepancies
Between Ship
and Shore
Figures

Inaccuracies
in Draft
Surveys

-~ -
e em— =



Cargo Shortage and Loss Mitigation

A discrepancy between ship and shore figures of 0.3%
or lower is within acceptable margins

A properly executed draft survey may have a 0.5%
inaccuracy

In the most severe scenario, the compounded miscalculation is

0.8%



(75.19 x 3,000,000) x 0.008 =

$1804,560 N

Saving per loading or discharge



Additional Future Applications

e Lightering

® Inter-tank Transfers

e Underway Ballasting

® Predictive Maintenance

Alternative Fuel Management
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Sustainability in Ship Design and Operations Conference 2024 -

FSRU CLOSED LOOP MODIFICATION

Hariharan Balasubramanian
Jonathan Cullum

- . . Assistant Professor, Department of Naval

N ERAsTRUCTURE E;E;gncl;sall;EE;QT;SS?S;E Architecture and Marine Engineering
SUNY Maritime College
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Jonathan Cullum

USMMA 1991
Marine Engineering Systems

USCG Chief Engineer
Steam / Motor /GT
Unlimited HP

Over 30 years at sea
LNG Carrier / Oil Tanker / Container / RoRo

Technical Superintendent
Energos Infrastructure
2022(Nov) — present

MARITIME COLLEGE

STATE UINIVERSITY OF NEW YORK

Hariharan Balasubramanian

2005 - 2011
Motor / Steam LNG Carriers
as 3rd Assistant and 2nd Assistant Engineer

2011 -2019
M.S & PhD in Ocean Engineering
(Florida Atlantic University)

2020 - 2022
Hydrodynamicist
(Ship — Bridge simulation models & Icebergs)

2022(Nov) — present
Assistant Professor
Department of Naval Architecture
and Marine Engineering
State University of New York Maritime College
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Russia Attacks Ukraine
Putin’s Forces Attack 1 kraine

Ukraine’s government said it faced “ pﬂ_f’ ALIAZEERA News-  Waron Gaza USElections Opinion Sport Video

multiple directions.” World leaders c(Russia-Ukraine war - Why-are Ukrainianisoldiers leaving the ranks?  The patrols hunting for conscript:

Putin’s actions.
News | Russia-Ukraine war

Timeline: After months of tensions, Russia
attacks Ukraine

= Russid lautiches a multipronged attack dfter months of diplomaeéiy

failing to resolve the crisis.
BUSINESS | RUSSIAN FEDERATION

Could LNG boost energy security if Russia
reduces exports?

Nik Martin

Published Feb. 23, 2022 Updated Oct. 23, 2024

Reuters World v USElection Business ™ Markets v Sustainability v More v
‘==crves are at their lowest in years with winter demand not yet over. As the Ukraine crisis
e rs over Russian supply, could liquefied natural gas (LNG) fill the gap?
Germany freezes Nord Stream 2 gas

project as Ukraine crisis deepens
By Sarah Marsh and Madeline Chambers — Y )
LA 2] <]

February 22, 2022 11:55 AM EST - Updated 3 years ago

ENERGOS e
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LNGPrime

Topics > Events Jobs  Advertise Subscription Login/Regis
The World s Premier LNG Platform

Europe | LNG Terminals

First FSRU arrives in Eemshaven to start serving Gasunie’s
LNG import hub

By LNG Prime Staff

September 4, 2022

Contracts and Tenders | October 24, 2024

Nebula's AG&P LNG to buy
Australia’s Venice Energy

The 170,000-cbm Golar Igloo in Eemshaven (Image: Gasunie)

The first out of two chartered floating storage and regasification units has arrived

in the Dutch port of Eemshaven where it will soon start serving Gasunie’s new LNG
import hub.

Vessels | October 21, 2024

MAN will no longer offer ME-GA
engine
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What is an FSRU?

3 Floating

Sl Storage

YO Regasification
U Unit
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What is an FSRU?

WIKIPEDIA

The Free Encyclopedia

Contents hide

(Top)
Byproducts
See also
References

External links

Q_ Search Wikipedia

Regasification

Article Talk

From Wikipedia, the free encyclopedia

(Redirected from FSRU)

Regasification is a process of converting liquefied natural gas
(LNG) at -162 °C (-260 °F) temperature back to natural gas at
atmospheric temperature. LNG gasification plants can be located on
land as well as on floating barges, i.e. a Floating Storage and
Regasification Unit (FSRU). Floating barge mounted plants have
the advantage that they can be towed to new offshore locations for
better usage in response to changes in the business environment.
In a conventional regasification plant, LNG is heated by sea water
to convert it to natural gas / methane gas.

Byproducts [edi)

Search

Donat

¥p 5languages v

Read Edit View history Tools wv

Regasification terminal of
Tokyo Gas in Yokohama

INFRASTRUCTURE
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Why use LNG ?

Environmental Benefits

LNG is considered one of the cleanest fossil fuels, with significant environmental
advantages:

* Lower emissions: When burned, LNG produces fewer emissions of carbon dioxide,
nitrogen oxides, and sulfur compared to other fossil fuels 1 4. It emits 40% less
CO2 than coal and 30% less than oil 4.

* Reduced air pollution: LNG emits significantly less soot, dust, particulates, and sulfur
dioxide compared to coal and oil &.

*» Noise reduction: LNG-fueled engines tend to be quieter than diesel engines,

reducing noise pollution 1.

Operational and Economic Benefits

* High energy density: LNG has a high energy density, allowing small amounts to
generate large amounts of energy 1.

» Efficiency in transport: Due to its high energy density, LNG enables longer travel
distances on less fuel, especially advantageous for maritime and long-distance land

transport 1.
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Regasification
OPEN use SW for heating

GEONY D, use external heat

use SW and external
heat together

COMBINED

INFRASTRUCTURE



SW Temps

Minimum SW inlet temp

Celsius (C)

20
18
16
14
12
10

N & O @

@se ate mperature .inf

iI

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

14°C

Fahrenheit (F)
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FSRU Development

First Gen

Second Gen

Third Gen

use Propane as
intermediary fluid

use direct LNG/SW
heat exchangers

use Glycol as
intermediary fluid

INFRASTRUCTURE



Energos Igloo

Chicago Power & Process, Inc.

Proprietary S&T LNG Vaporizers

1 CUSTOMER  SAMSUNG HEAVY INDUSTRIES REFERENCE NO. Golar
2 ADDRESS CPP FILE NO. CPP-11-104 {CH11-1234)
3 | PLANT LOCATION DATE  January 31, 2012
4 SERVICE OF UNIT  Single Stage H.P. LNG Vaporizor (51 Unita) ITEM MO HA 1100/2100/3100/ B
5 |SiZE 26480 T T TYPE  Special NJIN  HORIZONTAL Inclined 3 degroes
B SURFACE (m2) ross  THO.B SHELLS/UNIT  One SURF/SHELL (m2) a) 770.3
7 PERFORMANCE OF ONE UNIT
8 SHELL SIDE TUBE SIDE
9 | FLUID CIRCULATED Soa Water LNG / Natural Gas
10 | TOTAL FLUID ENTERING 2632 m3athr (Note 1) 104,276.10 kgihr
n INLET OUTLET INLET OUTLET
12 VAPOR - - - 104,276.10
13 uiD
14 I CONDENSABLES
o ° ° o 16 | DENSITY 1026.51 433 56 101.26
e 14°C minimum Inlet SW 7
17 | SPECIFIC HEAT 3 INEXTEEN ML 36001 35279
18 | THERMAL CONDUCTIVITY Wim-"C 06127 (6023 0.1907 0.0518
19 | LATENT HEAT Weabhg
20 | MOLECULAR WEIGHT 16.72 [Note 4)
(0] - -~ 21 | TEMPERATURE IN C 14.0 1529
22 | TEMPERATURE OUT T 7.22 (Note 2) B0
23 | OPERATING PRESSURE BarG 108.0
C 24 | NO. PASSES PER SHELL ONE ONE
25 | VELOCITY
26 | PRESSURE CROP Bar 1.74 (Note 3) 0.43
27 | FOULING RESISTANCE -G Note 5 Note 5
28 | HEAT EXCHANGED  19,934.99 [ MTD CORRECTED 443 °C
28 | TRANSFER RATE - SERVICE  884.4/877.7 Wim2C (Cléan ! Dasign)
a0 CONSTRUCTION _
31 | DESIGN PRESSURE BarG 7.0 125
32 | TEST PRESSURE BarG Por Cado Por Code
33 | DESIGN TEMPERATURE (MaxMin) °c 65 ! 470 [1] | -195.5
34 | TUBES 254 SMO(Note ) NO 802 ©OD 078 BWG 18 LENGTH 1646 m PITCH  33.3375 mm
35 | SHELL  ALBXN [ oD 1321cm
36 | EXPANSION JOINT (BELLOWS) AL-BXN ]
37 | BONNET 6L 85 CHANNEL COVER NiA
° ° 38 | TUBESHEET-STATIONARY AL-BXN TUBESHEET-FLOATING NiA
0 39 | BAFFLES - CROSS AL-6XN TYPE  Seg. FLOATING HEAD COVER NiA
. I I l I n I I I l u I I I O u e 40 | TUBE SUPPORTS AL-BXN IMPINGEMENT PROTECTION  Yes
41 | GASKETS NiA PACKING NiA
42 | TUBE TO TUBESHEET JOINT _ Seal Welded & Rolled into Double Grooved Holes
. N 43 | CONNECTIONS-SHELLSIDE v Sy O )y g RATING 16K JIS
o 44 | CONNECTIONS-TUBESIDE N 8" out_ 12" RATING 9008 RFWN
m I I n 45 | CORROSION ALLOWANCE = SHELL SIDE - TUBE SIDE__ =
° 46 | CODE REQUIREMENTS  ASME Sec. VIIl, Div. 1 TEMA CLASS "R
47 OTHER DNV
48 | NOTES (1) 1316 m3/br in “Cold” LNG section & 1316 m3/hr In "Warm" NG section at full load
49 (2) SW bulk outlot tomporaturo, SW flow of 1303 m3/hr in the “Cold” LNG section should be maintained at all times to guard
s0 | porating at full load,
51 | (4) Standard LNG: 86.01% C1, 3.2% C2, 0,6% C3, 0.05% IC4, 0.05%nC4, 0.01%IC5, 0.08% N2 imole %)
52 | (5) 15% excess surface area with no iti fouling applied
53 | (6) Holium loak tosted tube to tuboshoot joints
54 | (T) The hot circuit must be started first and shut down last.
55 | (B) Proprietary design features for tube side LNG distribution, performance, and venting.

Phone: 847/870-7T900
tavalle@chicagopowerandprocess.com

Chicago Power & Process, lnc.
Arlington Heights, linois 60004
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Heating from Shore

<

< VACUUM
BREAKER
«
COLD SW |
TOEET
\?
HOT SW
FROM EET :
'- . > SW
OVERBOARD
>
L |
FILTER FILTER FILTER
L L+ -
I i) 1l
SEA LIFT P/P 3 LIFT P/P 1 LIFTPIP 2
CHEST
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First Year of Operation

Harbor temperature as low as 3.5°C
14°C minimum inlet SW temp
9°C outlet SW temp

5—-060°CAT
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Close the Loop

Recirculate the vaporizer SW outlet
to the lift pump suction

Capture the 5 -6 °C AT

Obtain a higher capacity of the regas
plant

INFRASTRUCTURE



In 2018 a Hydroturbine Generator was
installed to recapture some of the
energy used to “lift" the SW to the regas
plant

So we already had a header tank to use
for a closed loop circuit

INFRASTRUCTURE
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Do the Math

TRIT —C
@\‘g MARINE

EEEEEEE
Modification of the LNG SW heating system to be capable of

Desktop Feasibility Study
Report
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This study has focussed on two areas. Firstly, an overview of the current heating arrangements, the
heating requirement for operation of two skids at full design capacity and the required heat supply to

meet these heating requirements. Secondly, the effects on the sea water system and pump operation
when converted from open loop to closed loop operation.

The study has looked at the technical feasibility of modifying the sea water regasification system to

operate in closed loop mode in the winter months in order to maintain operation of two
regassification skids at full design capacity.

It has been found, within the limits of the stated assumptions, a shore heat supply of approx. 100 MW

would be capable of providing sufficient heat to maintain this operation with closed loop operation of
the sea water system.

The study in considering pump operation has found that within the limits of the assumptions and
uncertainties, operation of the sea water lift pumps in closed loop mode can be controlled by
regulation of newly installed pump suction side and discharge side throttling valves to operate the
pump on its performance curve while minimising the deviation of the new operating point from the

original design operating point and remaining within pump manufacturers recommended maximum
operating pressure.

It is recommended to confirm the correct SW flow in the system when currently in operation and
review additional operating data in order to provide better model validation.

The system operation under abnormal conditions was considered. This was to evaluate the resultant
pressures around the svstem under the condition of pump operation with all vaporiser sea water

, . 391
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Increased Sustainability

Increased efficiency
Less fuel used for regas
Less emissions

L ess warm water to harbor
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Design Considerations

How to do it while on station
How to get the pipes into place
Increased suction head pressure

Stagnant water in the loop

INFRASTRUCTURE



Participants

4
‘~ 1T RIT
DNV G\!fg M AR

C
=

| N

INFRASTRUCTURE



Preliminary Design

Steel pipe with Glass Flake for tie-in
GRE pipes for recirculation
Additional Pressure Switches

What could go wrong?

INFRASTRUCTURE
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shortened pipe for placing

spectacle flange
spectacle flange
added
spectacle flange
added
shortened pipe for placing
spectacle flange
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Prefabrication
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Delivery
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; NERGOS ENERGOS IGLOO CLOSED LOOP PROJECT
R COMMISSIONING PROTOCOL

PRE-COMMISSIONING CHECKS

Responsible Description Expected Result
lgloo C/E Leak check of GRE piping before starting commissioning No leaks, piping full
Fill GRE piping with FW hose
Leak check
Cormrect any leaks before full system test
ABB Uploaded software to Lift Pump REM no alarms, no emrors
Can do stby lift pumps 1 by 1, with regas in operation
Ilgloo ETO Extract HV breaker and earth
lgloo ETO Return breaker to position after update
ABB Confirm functionality of Lift Pump REM 1 by 1 no alarms, no emrors
ABB Test Pressure switch functionality for Lift Pump REM using
Igloo C/E external pressure calibration pump. Liff pump does not
need to be running. Coordinate with CCR to test Stbdy lift
pumps
Lift pump 1 discharge REM command stop
Lift pump 1 filter outlet REM command stop
Lift pump 2 discharge REM command stop
Lift pump 2 filter outlet REM command stop
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19-Mar-24

07:51 3A booster pump stopped

08:00 3B booster pump stopped, Regas stopped

08:46 SW lift pump stopped

08:40 Sea chest closed

08:56 Start SW lift pump on closed loop mode, Commence closed loop tests
11:12 Commence unmooring with LNG/C “Gaslog Houston”
11:18 All lines cast off with LNG/C “Gaslog Houston"

11:37 Booster pump started 3A

11:42 Booster pump started 3B

12:00 250MMS online on closed loop mode

14:21 Booster pump started 2B

14:36 Booster pump started 2A

14:50 410 MMS online

15:00 440 MMS online

15:15 390 MMS online

16:18 450 MMS online

16:20 470 MMS online

16:23 410 MMS online

17:05 500 MMS online

17:10 Commence ramp down

17:26 3B booster pump stopped

17:29 3A booster pump stopped

17:40 Closed loop tests completed, switched to Open loop configuration
18:00 230 MMS online
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Conclusions

Project met expectations

Project completed
on time and within budget
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