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A unique & integrated business model

28/10/2024 Présentation Grain de Sail

sourcing
Maritime shipping

IMPORT/EXPORT production Distribution
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GRAIN DE SAIL by the numbers (2023)
+ 380 TONNES organic chocolate

3,8 M tablets sold

Forecast 2024 : 4,5 M tablets

+ 85 TONNES of organic coffee
Forecast 2024 : 135 tonnes

9,6 M€ Revenue

Growth +19%

Forecast 2024
11,9M € 
+24%

20232023
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Our values
28/10/2024 Présentation Grain de Sail
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2. Our values

28/10/2024 Présentation Grain de Sail

Quality
Products
Services

Sustainable
development

Environment
Social

Economic

Adventure !
Human adventure

Maritime adventure
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28/10/2024 Présentation Grain de Sail

CARGO sailboats
our
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Fleet of Modern cargo sailboats

28/10/2024 Présentation Grain de Sail

Pure sailing vessels :
90% ca rbon e mission re duction (1-2 g CO2/ ton/ km)
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6. Modern cargo sailboats

10/28/2024 Présentation Grain de Sail

Grain de Sail – 1st 
commercialy-certified cargo 
sailboat : 24 m and 50 T
payload capacity

Grain de Sail 2 – operational

since March 2024 : 52 m and

350 T payload capacity

8



6. Modern cargo sailboats

10/28/2024 Présentation Grain de Sail

Grain de Sail III – 2027 : 

110m and 2800 T payload
capacity (~200 TEUs)
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Efficient CarGO Sailing
3 key points for efficient cargo sailboat design:

1. Hull optimized for wind propulsion,
2. Favorable ratio between wind propulsion capacity and loaded 

ship weight,
3. Renewable energy production for onboard operations.

28/10/2024 Présentation Grain de Sail
10



Key learnings
• The wind-powered maritime transport market is emerging, but volumes remain relatively low for now.
• Reducing the cost of wind-powered transport is essential to attract more shippers and increase 

volumes.
• Scaling wind-powered transport means expanding the fleet of cargo sailing ships and increasing the 

loading capacities of these ships.
• The lack of standards and controls for decarbonization performance creates confusion for shippers 

(not all wind propulsion solutions or wind-propelled ships are equal).
• Routing and operations management are crucial for successful decarbonization.
• Wind-powered transport must adapt to the shippers’ operating modes and existing infrastructures.
• Goods must be perfectly secured both on the docks and onboard.
• Departure frequency, more than transit times, is key to meeting the logistics needs of shipper clients.
• Technical solutions provided by equipment manufacturers allow for larger ships while continuing to 

drastically reduce carbon emissions (reefable sails with large surface areas capable of sailing in all 
wind directions and strengths).

• The social framework for sailors (types of contracts, pay, working conditions, etc.) is inseparable from 
the projects for decarbonizing maritime transport.

28/10/2024 Présentation Grain de Sail
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St MALO

GUADELOUPE

New York City

28/10/2024 Présentation Grain de Sail

6. Decarbonized maritime transport
Transatlantic routes

EXPORT : wines, oils, etc.

Humanitarian
aid

12



Présentation Grain de Sail 10/28/2024

Grain De Sail 1
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28/10/2024 Présentation Grain de Sail Grain de Sail 2 – 52m et 350 T de capacité d’emport
14



www.gra indesa il.com

Grain de Sail SAS
4, route du bas de la rivière 29600 MORLAIX
Tel : 02 98 62 40 91
Mail : contact@graindesail.com28/10/2024 Présentation Grain de Sail
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Electric Propulsion Integration Lessons Learned
SISDO 2024

S AT C H E L  D O U G L A S ,  A B B

16
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Agenda

• Route Profiles

• Equipment Ratings

• Space Allocation

• Shore Charging
Considerations

17



What are the major 
design risks in any 
ship design?
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Design Risks

• Weight growth

• Lack of space

• Stability limits

• Speed/power

19



Route Profiles

20
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Route Profiles

• Design Speed

• Endurance/range

• Cycle Energy

• Trips/year

• Years of operation before battery replacement

Traditional Diesel Hybrid - Electric

21
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Route Profiles

• 13 kts

• 1500 nm range

• 2.8 nm crossing

• Charge on one end

250x increase in precision required in speed/power calculations

Traditional Diesel Hybrid - Electric

22
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Route Profiles

• 2.8 nm crossing: 11 minutes @ 12 knots
• 3 minutes maneuvering, 16 minutes unloading/loading in berth
• 9 daily round trips

23
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Route Profiles
Cycle Energy

• Speed and power

• Current

• Weather

• Trip duration

• Loading conditions

• Hotel Loads

24



Equipment Ratings
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Equipment Ratings and Margin
Electric Motors

• Electric motors are torque limited by frame size

• Possible to increase RPM to increase power, without
changing the frame

26
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Equipment Ratings and Margin
Batteries 

• Max C rate

• Need to calculate battery
charge/discharge from route
profile

• Share with battery vendors or
ABB to select size

Eventually, as design progresses, fix the battery size 

27
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Equipment Ratings and Margin
Hotel Loads

• Be careful with diesel parent vessel ELAs, similar
size hybrid vessel will be higher

• Cooling pumps

• Cooling fans

• Anti condensation heaters

• UPSs

• HVAC for multi-drive and battery rooms

• Avoiding condensation

Electrical equipment runs on cooling

28



Space Allocation

29
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Space Allocation
Multi Drive Lineups (Onboard DC Grid ) 

Multi drive (ODCG) Section View

M

DG

M

DGDG

Solid state 
breaker

DC-link

DG

800mm
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Space Allocation
Multi Drive Lineups 

Lineup Length Lineup Weight
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Space Allocation
Control Cabinets

• 1200 mm x 800 mm x 400 mm

• Wall mounted

• 100 kg

• 1x per motor

• 1x per engine

• 2x per Alarm and Monitoring (min)

• 2x control network

• 1x Remote Diagnostics/Data Logger System

You can never have too many!

32



Shore Charging
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Shore Charging

AC Shore Connection

Utility Transformer

Contactor and 
Breaker

Isolation 
Transformer

Charging Tower/
Cables

Plug on vessel

Contactor and 
Breaker

AC to DC Converter

DC Grid

Mains Power

Shore Side Vessel Side

Batteries

AC

34
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Shore Charging

DC Shore Connection

Utility Transformer

AC to DC Converter
 Breaker  and 

Contactor

Charging Tower/
Cables

Plug on vessel

DC Grid Batteries

Mains Power

Shore Side Vessel Side

DC

35
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Shore Charging

• Less land side equipment

• Medium Voltage can provide higher (>15MW) power

• Less equipment on the vessel

• Less long lead time transformers

• Feasible up to ~6MW charging power

• Supports land side batteries

AC DC

36
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Shore Charging
Who is responsible?

• AC – Transformer Secondary grounding

• REALLY need high resistance grounding

YOU are responsible for the interface!

37
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Shore Charging
Who is responsible?

• AC – Make line dead prior to connection/disconnection

• Shore electrical engineers unclear not used to PLC control/remote switching

YOU are responsible for the interface!

38
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Shore Charging
Who is responsible?

• DC – Short Circuit contribution from the shore to the vessel

• Need an IGBT based static switch and control system on shore to protect cables and bus bar

YOU are responsible for the interface!

39



PS.

Just use metric…
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Satchel.douglas@us.abb.com

41



A Novel High Thrust Efficiency Stationary Wind 
Sail Enabled by CoFlow Jet

Yan Ren, Ph.D., CTO
Gecheng Zha, Ph.D., CEO

CoFlow Jet Lift, Inc
Professor, U. of Miami, FL
gzha@coflowjetlift.com

WWW.COFLOWJETLIFT.COM
42



• 90% of global goods are transported by ships

• 2019*:
Cargo Ships: 100,000 
Goods Shipped: 11 Billion Tons 
CO2 Emission: 1.076 Billion Tons
Fuel Burned: 230 Million Tons
Fuel Cost: $165 Bn ($700/ton)

• EMISSION
1 of the largest ships:

DECARBONIZATION OF MARINE TRANSPORTATION:
A NECESSITY FOR GLOBAL ECONOMY AND OUR LIFE

Marine Ship Traffic | Tracked by Google Maps

= 50 million cars#

© CoFlow Jet, LLC - All Rights Reserved.

* White paper: Wind Propulsion for Ships,
Wind Ship Association, France, Sept. 2022

# E. Stratiotis, “Fuel Cost in Ocean Shipping”,
1/22/2018 43

https://drive.google.com/file/d/1NOMu1kGaXvNa1CkspSYqHUOWk3xeb_eO/view
https://www.morethanshipping.com/fuel-costs-ocean-shipping/


• Conventional flexible wind sails: large,
ineffective, inefficient, difficult to control.

• Too weak to power modern cargo ships.

THE OCEAN IS RICH IN WIND POWER: 
CLEAN,  SUSTAINABLE, AND PREDICTABLE

© CoFlow Jet, LLC - All Rights Reserved.44



PROBLEMS OF CURRENT RIGID WIND SAILS: 
LOW THRUST, COMPLEX, HIGH COST, LONG ROI

Credit: Katherine Kornei, 2017

FLETTNER ROTORS: Spinning Cylinders

© CoFlow Jet, LLC - All Rights Reserved.

TURBOSAILS

RIGID, THICK WINGS: 

45



OUR SOLUTION – COFLOW JET (CFJ) STATIONARY 
CYLINDER: ULTRA-HIGH NET LIFT AND POWER

COFLOW JET STATIONARY CYLINDER WIND SAILS: 
• No rotation, simple system

• Low pressure fans embedded inside the cylinder

• Sucks a small amount of air flow at the 4 o'clock position,
pressurized by the fans, and ejects the air mass tangent to the
surface at the 12 o'clock position

• Ultra-high lift coefficient (CL>20) from wind

• Very low power required

• Ultra-high net propulsive power from wind

• Originated from Aeronautics Research

• Verified numerically and experimentally in U.S. National
Laboratories

© CoFlow Jet, LLC - All Rights Reserved.46



OUR SOLUTION – COFLOW JET (CFJ) STATIONARY 
CYLINDER: UNIQUE AND SUPERIOR 

WIND TUNNEL TESTING UNDER DARPA FUNDING 

• 18 Patents issued

• 20 Years research

• Grants received: $2.5 Mn (DARPA, NASA, NSF, AFRL, ARO, CIRA, EBPT, …)

© CoFlow Jet, LLC - All Rights Reserved.

BASELINE

CFJ

47



COFLOW JET CONCEPT EXPERIMENT ANIMATION 

© CoFlow Jet, LLC - All Rights Reserved.48

https://acfdlab.miami.edu/images/coflowjet-concept-exp.mp4


COMPARISON OF COFLOW JET CYLINDER
WITH FLETTNER ROTOR BY CFD

CoFlow Jet Cylinder Flettner Rotor

Flow Flow

CL=15, Pc=3.3
High Lift

CL=5, Pc=0.7 
(weight=0, Vrotate/V∞ =3)

© CoFlow Jet, LLC - All Rights Reserved.

Lift

Lift

49



Summary: Reducing CL decreases CFJ power 
exponentially; Two cases studied: CL=15.3, CL=7.6 

Flow Flow

Table 1 CFJ sail compared with a Fletter rotor

Case 1: CFJ Performance 
(CFJP): CL=15.3, Pc=3.3, AR=8 

Case 2: CFJ Efficiency (CFJE): 
CL=9.93, Pc=0.77, AR=5 

Cases CL CD PC CL/CD CL/PC AR Cmu

Flettner 

rotor (FR)
5.000 1.90 0.70 2.632 7.143

2D 
test

Vrot/
V∞

=3

CFJP 15.30 4.20 3.30 3.643 4.636 8 1.0

CFJE 9.930 3.37 0.77 2.947 12.90 5 0.5

CFJE2 7.6 2.15 0.35 3.53 21.71 5 0.3

© CoFlow Jet Lift, Inc - All Rights Reserved.50



3D flow structures for CFJP

• 3D streamlines around CFJ wind sail, colored by Mach
number

© CoFlow Jet Lift, Inc - All Rights Reserved.

• Vorticity structures (iso-surface
of 

Lambda Max), colored by 𝝎𝒛

51



3D flow structures for CFJP

© CoFlow Jet Lift, Inc - All Rights Reserved.

10% Span 50% Span 90% Span

52



CFJ sail net power across the full AWA range

Flow Flow

Example  Sail: 
• Diameter: 3m
• Height: 24m
• AWS(apparent wind speed):

10m/s
• AWA:   apparent wind angle
• 𝑉𝑟𝑎𝑡𝑖𝑜 = Τ𝑉𝑠ℎ𝑖𝑝 𝑉𝐴𝑊𝑆

• 𝑃𝑛𝑒𝑡 = 𝑃𝑡𝑜𝑡 − 𝑃𝐹𝑅/𝐶𝐹𝐽

Pnet =0.5ρV3
AWS S[Vratio*(CL*sin(AWA)-CD*cos(AWA)) – Pc]

© CoFlow Jet Lift, Inc - All Rights Reserved.

An efficient strategy is to use CFJE and CFJP mode at different AWA:

1) CFJE for headwind or tailwind with AWA <40-60deg, AWA>140deg
2) CFJP mode between 40deg and 140deg.

53



Net Power Production Comparison at Different Velocity 
Ratios

Flow Flow

𝑉𝑟𝑎𝑡𝑖𝑜 = 0.7 𝑉𝑟𝑎𝑡𝑖𝑜 = 1.0 𝑉𝑟𝑎𝑡𝑖𝑜 = 1.3

© CoFlow Jet Lift, Inc - All Rights Reserved.

• At low ship speed  Vratio ≤1, CFJE and CFJE2 are more efficient at near headwind and tailwind conditions.
• At high ship Vratio >1, CFJP could be efficient for the whole AWA range.
• CFJ wind sails generate significantly more net power than Flettner Rotor across the whole range of AWA.

54



Net Power Comparison with Combined CFJ Modes: 
Velocity Ratio = 0.7

Flow Flow

• Blue symbol indicates CFJE or CFJE2
and red symbol indicates CFJP

• CFJE modes to be used near head
wind or tail wind conditions.

• CFJP mode to be used in side wind
conditions.

• CFJ wind sails generate significantly
more net power than Flettner Rotor
across the whole range of AWA.

© CoFlow Jet Lift, Inc - All Rights Reserved.55



CFJ Wind Sail Net Power Improvement over Flettner Rotor: 
Velocity Ratio = 0.7

Flow Flow

AWA (deg.)
FR net 

power (kw)

CFJ WS net 

power (kw)
Improve (%)

0.000 -89.523 -81.806 0.000

10.000 -61.829 -18.822 0.000

20.000 -33.195 2.439 ∞

30.000 -4.490 44.392 ∞

40.000 23.413 84.528 261.023

50.000 49.668 133.995 169.784

60.000 73.475 198.676 170.402

70.000 94.111 253.953 169.844

80.000 110.950 297.091 167.770

90.000 123.480 326.781 164.643

100.000 131.320 342.120 160.524

110.000 134.232 342.641 155.261

120.000 132.128 328.330 148.495

130.000 125.070 299.621 139.562

140.000 113.275 257.386 127.222

150.000 97.100 209.407 115.661

160.000 77.037 168.644 118.914

170.000 53.695 121.724 126.698

180.000 27.783 70.075 152.222

© CoFlow Jet Lift, Inc - All Rights Reserved.

• CFJ wind sails have wider AWA range and generate significantly more net power

than Flettner Rotor, > 115% across the full AWA range.
56



Flow Flow

© CoFlow Jet Lift, Inc - All Rights Reserved.

Net Power Comparison with Combined CFJ Modes: 
Velocity Ratio = 1.3

• Blue symbol indicates CFJE or CFJE2
and red symbol indicates CFJP

• CFJE modes to be used near head
wind or tail wind conditions.

• CFJP mode to be used in side wind
conditions.

• CFJ wind sails generate significantly
more net power than Flettner Rotor
across the whole range of AWA.
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Flow Flow

AWA (deg.)
FR net 

power (kw)

CFJ WS net 

power (kw)
Improve (%)

0.000 -139.797 -138.695 0.000

10.000 -88.366 -21.725 0.000

20.000 -35.188 17.760 ∞

30.000 18.121 95.673 427.955

40.000 69.942 233.838 234.330

50.000 118.700 371.631 213.085

60.000 162.913 493.710 203.052

70.000 201.238 596.367 196.349

80.000 232.510 676.481 190.947

90.000 255.780 731.619 186.034

100.000 270.340 760.105 181.166

110.000 275.748 761.074 176.003

120.000 271.840 734.496 170.195

130.000 258.734 681.179 163.274

140.000 236.828 602.743 154.507

150.000 206.789 501.571 142.553

160.000 169.528 380.737 124.587

170.000 126.178 255.166 102.226

180.000 78.057 159.245 104.011
© CoFlow Jet Lift, Inc - All Rights Reserved.

• CFJ wind sails  generate significantly more net power than Flettner Rotor, >
100% across the full AWA range, much more at low AWA.

CFJ Wind Sail Net Power Improvement over Flettner Rotor: 
Velocity Ratio = 1.3
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Angle of Attack Variation Tolerance (2D)

➢Definition of Thrust Coefficient:

CThrust = CL・cosAoA + CD・sinAoA

59



Angle of Attack Effect

➢Time-Averaged CL, CD, PC and CThrust VS AoA:

Sketch of CThrust 
magnitude

CFJ wind sails can 
tolerate wind 
direction 
variation range of 
-40deg  to 20deg
without
substantial lift
drop.
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Angle of Attack Effect

➢Time-Averaged CL/CD, CL/Pc and CL/CD,c vs AoA

Lift-Drag Ratio CL/Pc
Corrected CL/CD
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BENEFITS OF CFJ STATIONARY CYLINDERS:
HIGH THRUST, SIMPLE AND LOW COST 

• 20%-50% fuel reduction for large cargo ships

• Propulsive power increase > 100%

• Ultra-high thrust (>2X), CL ≥ 15

• 60-95% wind power for mid/small size cargo ships

• Simple system with no rotating structures

• Compact for all ship sizes

• Very low power required

• Low cost of manufacturing/maintenance

• Retrofitting

• Ideal for fully electric ships

© CoFlow Jet, LLC - All Rights Reserved.62
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© CoFlow Jet, LLC - All Rights Reserved.
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LEADERSHIP TEAM
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OUR  FRONTIER IS BEYOND  INFINITY 

23

EBPT

Transforming Marine Propulsion 

© CoFlow Jet, LLC - All Rights Reserved.

MAGGIE using CoFlow Jet technology is selected 
by NASA to potentially fly on Mars, Jan 2024.  
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© 2024  |  BLUEWASP

Performance evaluation of a 
Flettner rotor with flap
Dr. G. Bordogna, Blue Wasp Marine BV
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Presentation background & preface

© 2024  |  BLUEWASP

• Results obtained during Wind Assist PhD research (2013-2020) at

• Credit to co-authors Albert Rijkens and Nico van der Kolk

• In 2023 TUDelft started a new large research program on Wind Assisted Propulsion

• Blue Wasp Marine is an independent consultancy working with all wind assist
technologies

67



Flettner rotor & flap concept

© 2024  |  BLUEWASP

• Flettner rotor is a spinning cylinder that, thanks to the
Magnus effect generates an aerodynamic lift

• It’s an active high-lift device, it requires a power input to
function

• Today, several ships are fitted with this device

• Flap addition: the goal was to fix the separation point,
increase CL/CD ratio and improve upwind performance

Backau ship equipped with 2 Flettner rotors (1924)

68



Magnus effect

© 2024  |  BLUEWASP

Relations between forward speed and rotational 
velocity of the rotor are expressed with the velocity 
ratio or “k-factor”:

k=
NπD 

V

N = Rotational speed rotor
D = Diameter of the rotor
V =  Wind speed

N

L

D

69



Importance of Lift-to-Drag ratio

© 2024  |  BLUEWASP

Due to “motorsailing”, WASP ships spend large 
amount of time sailing upwind

rotorV

TWV

AWV


L

D

Wind propulsion only
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Importance of Lift-to-Drag ratio

© 2024  |  BLUEWASP

Due to “motorsailing”, WASP ships spend 
large amount of time sailing upwind

Improving the lift/drag ratio would lead to 
great benefits to WASP ships

TWV

AWV

D

engineV

Wind assisted propulsion (wind + engine)

rotorV

L
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Wind tunnel experiments

© 2024  |  BLUEWASP

Model experiments at the Politecnico di Milano 
wind tunnel

Features

Length = 36 m

With = 13.8 m

Height = 3.8 m

Max wind speed = 15 m/s

Benchmark tests with the “Delft Rotor”
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Wind tunnel experiments

© 2024  |  BLUEWASP

Construction of the “Delft Rotor”

• Large scale Flettner rotor (D=1m and H=3.7m)

• No tip effects

• Very high Reynolds numbers

• Equipped with 2 force balances and 2 different
pressure measurement systems
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Results Delft Rotor

© 2024  |  BLUEWASP

• Lift coefficients is not affected by the Reynolds
number for 𝑅𝑒 ≥ 3.6 ∙ 105

• Drag coefficients are still influenced by scale
effects even for the highest 𝑅𝑒 tested

• Tests with flap are conducted at 𝑅𝑒 = 3.6 ∙ 105

to achieve a velocity ratio of up to 𝑘 = 5

𝑅𝑒 =
𝑉𝐷

𝜈
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Results Delft Rotor

© 2024  |  BLUEWASP

• Pressure distributions at Delft Rotor mid-span

• Effect of 𝑅𝑒 number on the pressure distribution
especially at the rear of the cylinder

K=2

L

D
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Delft Rotor with flap
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Results Delft Rotor with flap

© 2024  |  BLUEWASP

• Flap influences the separation point of the flow

• Drag is reduced

• Lift is reduced to a smaller extent

• Lift-to-drag ratio roughly doubles for the flap at
180 deg position

K=3
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Performance prediction analysis

© 2024  |  BLUEWASP

• Performance Prediction Programme
for WASP ships

• Balances aerodynamic, hydrodynamic
and main propulsor forces

• Aerodynamic properties of the rotors
are based on the wind tunnel
experiments

• Hydrodynamic coefficients are based
on the Delft Wind-assist Series
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Case study

© 2024  |  BLUEWASP

Configuration

• Comparison of the standard FR and
the FR with flap

• Damen Combi Freighter 5000 with an
overall length of 86 m

• Rotor dimensions D = 3m and H = 18m

• Different rotor numbers and positions
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Tacking angle comparison

© 2024  |  BLUEWASP

Results for two Flettner Rotors “Line”

• Aerodynamic thrust of the FR with Flap is greater or
equal compared to the Standard FR

• FR with Flap has a considerably smaller tacking angle

• Tacking angle of Standard FR is 42 deg

• Tacking angle of FR with Flap is 30 deg

TWS = 20 kts and Vs = 11 kts
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Fuel savings polar comparison

• Polar diagrams show the percentage fuel savings of
the ship with rotors compared to the same vessel,
operating in the same conditions, but without wind
assistance

• FR with flap gives higher fuel savings particularly for
𝑇𝑊𝐴 < 90°

• Ship is able to operate at smaller wind angles

Results for two Flettner rotors “Line”: Vs=11 kts

Standard Flettner rotor Flettner rotor + flap
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Evaluation on shipping route

• Wind conditions of the North Sea region

• Fuel consumption polar diagrams are multiplied with
the wind scatter diagrams for an S-N and N-S route

Route Two FR without flap Two FR with flap Increase

North Sea S-N 15.3% 18.1% 18.3%

North Sea N-S 11.4% 15.1% 32.5%

Percentage fuel savings at a ship speed of 11 knots

© 2024  |  BLUEWASP

Wind rose: Rotterdam – Trondheim route
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Conclusions

© 2024  |  BLUEWASP

Aerodynamic characteristics

• Adding a flap to a FR can increase the lift-to-drag ratio up to a factor of 2

Performance improvements on a ship
• The higher lift-to-drag ratio of the FR with flap assures that it can attain a larger aerodynamic

thrust than a Standard FR for upwind sailing conditions

• The improved lift-to-drag ratio of the FR with flap results in a smaller tacking angle which
increases the operational profile

Fuel savings

• For the reference ship operating on the North Sea a performance increase of up to 32.5% is
reported due to the additional flap on the Flettner Rotors
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+39 3486725357
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Lessons from sailing vessel disasters 

“To the men of the Fantome- there but for the grace of God go I”,  The Ship and the Storm – 
Hurricane Mitch and the Loss of the Fantome,  by Jim Carrier

Sergio Perez, Ph.D.
Department of Marine Engineering, US Merchant Marine Academy
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Fantome, 286 foot sailing cruise ship, 
sank in Oct 1998 in Hurricane Mitch, in 
waters off Honduras

Approximate site of sinking

Mitch was a Category 5 hurricane with 
180 mph winds that also decimated 
Honduras, killing 7,000 people with flood 
waters, and destroying a large portion of 
Honduran infrastructure. 86



On October 26, passengers arrived at ship location in Omoa, Honduras. The Captain decided to cancel the cruise because of 
Hurricane Mitch, but sailed for Belize with the passengers at midnight. This was done for the comfort of the passengers, as 
travel to the airport was easier for passengers from Belize. A day was wasted in which a sheltering place for the ship could have 
been found. 
According to 1-2-3 Hurricane Avoidance Rule recommended at that time, the ship should not have sailed. Basically, a circle of 
about 200 mile radius would be drawn around the hurricane’s 24 hours forecast position, and a ship should stay out of that 
circle.  Fantome was on the outer edge. We note that Fantome’s escape was blocked on the south by Honduras and west by 
Belize.

Ship at anchor in Omoa

Mitch Position

Andy Chase of Maine Maritime (author of Auxiliary Sail Operations): “it is clear that he (the Captain) is already hopelessly 
trapped in a situation with no safe way out..his only option at that time was to find the best harbor”.  
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Ship location after dropping 
passengers off 10/26 1900Z

Approximate Mitch 
position 10/26 1900 Z

Captain Andy Chase: “I believe the fundamental mistake made by the Captain of the Fantome was to 
underestimate the unpredictability of a hurricane “

But the Captain sailed to Belize City….
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El Faro. Sank off the Bahamas in Hurricane Joaquin enroute from Jacksonville Florida to 
Puerto Rico, October, 2015 with 38 lives lost.

Captain used commercial 
hurricane position plotting 
software with weather 
information that was 5 hours 
older than NHC forecast, 
making the hurricane seem 
further away than it really was.
But even if the forecast had 
been correct, the Captain was 
still too close to the storm, as 
the Captain ascribed a precision 
to the hurricane forecast 
position that was unjustified.
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“Like a race car driver, he (the Captain) cornered tight along Joaquin’s presumed course in order to shave off 
seconds from his time”, Rachel Slade, author of Into the Raging Sea
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From the NTSB report on 
the El Faro sinking:

“The NTSB determines that the 
probable cause of the sinking of El 
Faro … was the captain’s insufficient 
action to avoid Hurricane Joaquin, 
his failure to use the most current 
weather information, and his late 
decision to muster the crew…..”
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Better information now available from NHC (1-2-3 Rule no longer generally recommended):

“What is an acceptable level of risk when lives and property may be at stake?”  

Graphic from https://www.nhc.noaa.gov/aboutnhcgraphics.shtml?
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This tragic incident is still under investigation.

https://www.youtube.com/watch
?v=dOSIjoZnHwI  Note wind 
ferocity and vast amounts of rain

It is likely that downbursts played a large 
role in this sinking.

Downbursts and microbursts are rapidly 
descending masses of air from storm 
clouds that move horizontally as they 
approach the water/ground surface.

Sailing Yacht Bayesian, sunk while at anchor in August, 2024 with 7 
casualties 

Video from 2 to 5 minute marks
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• 56 m length (184 ft). Single 72 m high mast. The norm for 
these vessels is two shorter masts.

• Vessel has roughly 200 ton lead ballast, 60 tons of 
which are on a retractable keel extending about 6 m 
beyond the ship bottom. Total draft is 9.8 meters.

Sources:  Stephen Edwards, skipper of Bayesian (2015-2020), Scuttlebutt Sailing news, August 27, 2024, and Perini Navi web site 

Representation of retractable keel (may not be accurate). 
Image from Sailing Anarchy forum.
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• While anchored (sails furled), eyewitness reports say vessel was suddenly knocked down by wind 
during a thunderstorm. 

• Vents on side of ship for HVAC and electricity generators were probably open, so down-flooding angle was 
about 45 degrees.

• Stability is reduced when the keel is up: 
vessel does not right herself in rolls greater 
than 75 degrees.

•  With keel down, vessel rights herself up to 
90 degrees 

Sources:  Stephen Edwards, skipper of Bayesian (2015-2020), Scuttlebutt Sailing news, August 27, 2024, and Perini Navi web site 

• Ship was anchored with retractable keel up, as called for in ship operating instructions from Perini 
Navi (designers).

• Italian government prosecutors said sinking was due to a downburst (ANSA.it)
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Once the vessel was on her side, water 
might also rush in from entry area at stern. 
(image from itboat.com)
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Downbursts are a recognized threat to aviation but mostly ignored for ships

• Modern forecasting tools usually give ample warning for hurricanes. Downbursts give little or no warning. 

Image from noaa website

• Downbursts are caused by rapidly sinking air in very tall storm-clouds, usually cumulonimbus. When the descending 
air approaches the surface of the earth, the flow of air spreads out horizontally.  Downbursts cause wind-shear 
experienced by aircraft. Macrobursts are large downbursts, microbursts are smaller than 4 km.
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Discovery of the downburst

Meteorologist Ted Fujita noticed a “starburst” 
pattern of downed trees after a storm, similar 
to the photograph of a corn field shown at 
right. A tornado would leave a swirling 
pattern.

Fujita’s discovery was met with great 
skepticism. Meteorologists at the time 
believed that a downburst would have to 
lose its speed as it approached the ground.

The downburst hypothesis solved the 
riddle of the crash of Eastern airlines 
Flight 66 in June 1975 as it tried to 
land.
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• Fatal commercial aircraft accidents during landing and take-off led to federally-funded wind-shear 
research projects (JAWS and NIMROD) in the 1970’s and 1980’s.

• Work by Fujita and others showed that downbursts could be as powerful as hurricanes and 
tornadoes, with winds up to about 130 knots, or 70 m/s. 

• JAWS was conducted in Denver Colorado, May-August, in which 182 microbursts were detected. 
The fastest recorded downburst was 36 m/s (about 72 knots).

• Underway sailing ships can be endangered by downbursts. If ships have even a short 
warning a downburst is coming, they can prepare to “fall off” (turn downwind) or de-
power the sail (weather-vane into the wind)

https://www.youtube.com/watch?v=Z5vA4QvaH1Q 

• While anchored with a retractable keel up, the stability of a vessel is reduced. A sudden strong 
wind acting on a mast, rigging and ship superstructure could be more likely to roll an anchored 
sailing vessel to her downflooding angle than if the retractable keel were down.
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Downbursts are very difficult for sailors to spot:

A survivor from sinking of Pride of Baltimore recalls: “There was a line of squalls on the quarter and overcast skies 
on the beam. None of them appeared unduly threatening…. We were suddenly hit by a wall of wind and water 
with wind speeds of 70 knots and more… in what appeared to be slow motion the boat started laying over to port 
and in less than 60 seconds the boat was over on her side”.

In this incident, as in other similar sudden-wind events 
such as the sinking of S/V Albatross and Pamir, open 
hatches allowed water to enter the vessels once they 
were knocked down.
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DOWNBURST/MICROBURST DETECTION

• Downbursts/wind shear are routinely detected by Doppler weather radar at airports and on-board
commercial airliners.

• Ship radars are usually not Doppler type. While merchant ship radars detect the presence of storms and

can be used to estimate the severity of rainfall, there is no detection capability for downbursts.

• Off shore oil rigs use LIDAR (Light detection and ranging) to detect strong winds. LIDAR is believed
to be a better detector, but its greater cost and complexity may not be necessary for ships.

101



The loss of the 316 ft sailing vessel Pamir in 1957 with Hurricane Carrie:
• 80 people died, with 6 survivors.
• Gust knocked vessel down, and she never recovered.
• Barley cargo may have shifted since cargo was not bagged, as was normally done on ship.
• Hatches had been left open, permitting water in when vessel was knocked down.
• Ship should have run with the wind instead of beating into it, since it was in “navigable semi-circle”

Public Domain photo from Wikipedia

Source: Tall Ships Down, by Daniel Parrot
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Asgard II, a tall ship training and cargo vessel, collided 
with an unknown underwater object in the Bay of 
Biscay. The collision resulted in the damaging of the hull 
and sinking of the vessel (MCIB, 2010). No lives lost.

WHALE STRIKES and retractable keels

• The merchant sailing vessel of the future may require movable surfaces such as retractable keels and fins which 
extend below the vessel’s normal draft (Woodward, 1975), such as used in Bayesian and other large vessels. These 
large appendages may be susceptible to whale strikes.

• While the steel hull of large modern ships may not be damaged by a whale strike, a fin extending 
beneath the hull would be more vulnerable. Whales can weigh as much as 300,000 lb (148,500 kg).

While it is not certain that Asgaard II was sunk by a whale, 
the Bay of Biscay is a world-famous whale watching 
location.
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WHALE STRIKES, continued

• Whales do not appear to avoid areas of heavy ship traffic, and their reaction to approaching 
ships is uncertain. Some whales descend, some don’t move. There is no apparent response 
pattern, and loud sounds do not result in a flight response.

• Research suggests collisions may occur far more frequently than we know. Scientists estimate 

only about 10% of strikes are reported.

• A release mechanism on movable control surfaces should be considered, much like the kick-

up rudders on some catamarans. 

• Whales are detectable on common sonar used to locate fish.
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 1: Doppler radar used on aircraft should be considered for sailing merchant ships for the detection of 

downbursts and other sudden winds. Automatic sail de-powering should also be considered in the event of 

a sudden winds with sails up.

2: The vulnerability of vessels at anchor with retractable keels raised should be studied, in the event of 
sudden winds from downbursts or waterspouts.

3: Vents should be placed in a position where they are closer to amidships, in order to increase the 
downflooding angle. Hatches and vents should have some automatic closing mechanism if water enters 
from sudden rolls. 

4: Sailing vessels with deep underwater appendages should use sonar to prevent collisions with whales.

5: “Kick-up” mechanisms should be studied for deep-draft underwater appendages.

6:  We are all capable of making poor decisions. Discussion is needed dealing with how Captains and 

management can make better hurricane decisions. More mandatory training? Use AI ? 

LESSONS LEARNED
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NEEDS
A regional dynamic techno-economical 
scenario simulation model

Guilhem Gaillarde
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A dynamic techno-economic model of waterborne transport activities that allows to 
evaluate sustainable fuel deployment strategies for a fleet or regional waterborne 
network.

Characteristics and Objectives

▪ Model the current eco-system, used as benchmark
▪ Identify region-specific possibilities to meet emission targets (for fleet and energy)
▪ Create and discuss alternative solutions
▪ Elaborate and play transition pathways scenarios
▪ Evaluate and identify challenges and needs for harbour infrastructure, energy,

operations and fleet
▪ Organise workshops to elaborate  regional strategy with all stakeholders
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A regional waterborne ecosystem consists of 3 main actors

• Energy 
 production, storage and supply

• Infrastructure 
 harbours, waterways, bunker or charging locations

• Ships
 operational profile, transport capacity, power systems
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Resources

Energy carriers
▪ Properties
▪ Production emissions
▪ Distribution
▪ Price development
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Resources

Harbour infrastructure
▪ Storage
▪ Supply
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Resources

Waterborne transport activities
▪ Routes
▪ Ship characteristics
▪ Transport capacity
▪ Operational profile
▪ Available power systems
▪ Operational emissions
▪ OPEX
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Resources

The model simulates the 
evolution of the waterborne 
regional network over time:

▪ Free mode: evolution based 
on model’s economy 
(development of fuel prices, 
availability of energy carriers, 
readiness of power systems, 
…).

▪ Forced mode: imposed 
deployment of alternative 
technologies.
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Example on the Rhine region

Region
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Routes / waterways

Region – waterways - 
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Harbours
- Loading / unloading goods & passengers
- Bunkering capacity & type of energy

Region – waterways - harbours
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Energy and emissions

Region – waterways – harbours – energy
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Region – waterways – harbours – energy
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Region – waterways – harbours – energy
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Region – waterways – harbours – energy
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Region – waterways – harbours – energy
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Region – waterways – harbours – energy
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https://sustainablepower.application.marin.nl/Region – waterways – harbours – energy

126



https://sustainablepower.application.marin.nl/

WELL                                                                  TANK                                                   WAKEResources Propeller

g CO2 eq.

1 kWh 
effective

GWP100 or GWP20 (Global Warming Potential)

Region – waterways – harbours – energy – emissions

127



Families of ship types sailing in the region, now
- Characteritics
- Power performance
- Engine & power systems
- Endurance (autonomy / amount of bunkered fuel)
- Cargo capacity

Region – waterways – harbours – energy – emissions - ships
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Fleet composition (representative)
- Number of ship per family

#4

#2

#1

#8

Region – waterways – harbours – energy – emissions - ships
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Fleet distribution & operations
- Routes
- Operationnal profile (speed, etc)

#4

#2

#1

#8

Region – waterways – harbours – energy – emissions – ships - operations

130



Vessel types and 
transport 
journeys

21.9 billion tkm covered 
by top 25 relations
Representing approx. 
20% of transport 
performance (tkm) 
in Rhine countries 
with main vessel types 
and commodities.

Nr Port A Port B vessel type Commodity

1 Rotterdam Duisburg Push B4 Ore

2 Rotterdam Antwerp C3L/B Containers

3 Rotterdam Karlsruhe MTS 135m Crude oil

4 Amsterdam Karlsruhe C3L/B Coal

5 Rotterdam Basel C3L/B Containers

6 Antwerp Thionville MVS110m Coal

7 Amsterdam Antwerp C3L/B Containers

8 Rotterdam Krotzenburg C3L/B Coal

9 Amsterdam Rotterdam MTS 135m Oil

10 Antwerp Mainz MVS 135m Containers

11 Breisach Cuijk MVS 110m Sand&gravel

12 Antwerp Duisburg C3L/B Containers

13 Rotterdam Duisburg MVS 110m Containers

14 Rotterdam Ludwigshafen MTS 86m Chemicals

15 Rotterdam Kampen/Zwolle MTS 110m Oil

16 Rotterdam Strassbourg MVS110m Agribulk

17 Amsterdam Heilbronn MVS 105m Animal Fodder

18 Duisburg Antwerp MVS 110m Metal products

19 Rotterdam Alphen a/d Rijn MVS 105m Containers

20 Terneuzen Rotterdam MTS 110m Chemicals

21 Wesel Enkhuizen MVS 67m Sand&gravel

22 Rotterdam Herne MVS 86m Metal (scrap)

23 Dusseldorf Antwerp MVS 110m Agribulk

24 Antwerp Gent MVS 110m Coal

25 Rotterdam Duisburg MVS 86m Agribulk

9
40
22
17
9
16
9
5
6
7
12
4
15
16
4
4
4
3

10
3
1
2
1
2
1

Region – waterways – harbours – energy – emissions – ships - operations
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Match regional environmental conditions
- Variation over 30 years (hindcast data)
- Current speed
- Waterdepth
- Wind&Waves

Region – waterways – harbours – energy – emissions – ships – operations - environment

132



Set-up is ready to run the benchmark case: 
current regional operations (business as usual)

Region – waterways – harbours – energy – emissions – ships – operations - environment
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%

Region – waterways – harbours – energy – emissions – ships – operations - environment
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Setting-up alternative ships (sustainable twins)
- Engine type (ICE or Fuel cells / battery)
- Energy carriers
- Loss of cargo capacity

Sustainable Twins

Region – waterways – harbours – energy – emissions – ships – operations – environment – alternative solutions
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Setting-up alternative ships (sustainable twins)
- Engine type (ICE or Fuel cells / battery)
- Energy carriers
- Loss of cargo capacity

Region – waterways – harbours – energy – emissions – ships – operations – environment – alternative solutions
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Region – waterways – harbours – energy – emissions – ships – operations – environment – alternative solutions

For each developed sustainable 
alternative power system and energy 
carrier, the increase in volume/weight is 
taken into account and the reduction in 
payload capacity calculated

Because of the lower energy density of 
sustainable alternative energy carriers 
(compared to diesel), sustainable twins 
have less range, less cargo capacity, or 
both (less…)
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Region – waterways – harbours – energy – emissions – ships – operations – environment – alternative solutions
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Setting-up alternative ships (sustainable twins)
- Engine type (ICE or Fuel cells / battery)
- Energy carriers
- Loss of cargo capacity

Region – waterways – harbours – energy – emissions – ships – operations – environment – alternative solutions
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Setting-up alternative ships (sustainable twins)
- Engine type (ICE or Fuel cells / battery)
- Energy carriers
- Loss of cargo capacity

Region – waterways – harbours – energy – emissions – ships – operations – environment – alternative solutions
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Set-up is ready to run alternative scenario’s

And here begins workshops / brainstorms / visions / discussions…

Region – waterways – harbours – energy – emissions – ships – operations - environment
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Promising alternatives in terms of 
GHG emission reduction

Impact on GHG emissions
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Electricity issued from European 
electricity mix (containing also fossil 
based electricity production)

“biased” assumption: H2 produced 
based on 100% renewable 
electricity…

Impact on GHG emissions
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In scenario 5 & 8, 
onboard energy capacity 
was chosen to minimize 
the number of additional 
bunker events (maximize 
range). This had a 
drastic effect on the loss 
of cargo thus transport 
capacity, yielding a large 
fleet increase need.

Fleet increase (transport capacity) need
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Renewable Electricity need
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Bunkering event need
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Best in class for GHG emission reduction    -95%!
Can up to -100% with only renewable e-
Best in class for polluting emission reduction (Sox, PM, …)   
But…
• 14 times more bunkering events 

(battery swaping infrastructure to be deployed!)
• 50 GWh e- per month
• 20% fleet increase

Best in class for limited operationnal change,
“Only” 2 times more bunkering events
Acceptable emission reduction: -75%
Limited renewable electricity need
Affordable Capex
But…
• 26% fleet increase
• No reduction of polluting emission (Nox, Sox, PM, …)
• GHG reduction only valid with good HVO!
• Availabity of such HVO?

FULL ELECTRIC WITH BATTERY SWAPPINGHVO / BIODIESEL + others
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https://needs.application.marin.nl/dashboard

Greece maritime network

• 74 routes (60 served by only one of the selected vessels)
• 843 transport journeys performed (62% of all services 

provided in 2021) 153
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https://needs.application.marin.nl/dashboard
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https://needs.application.marin.nl/dashboard
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https://needs.application.marin.nl/dashboard

0

200000

400000
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800000

1000000

1200000

1400000

1600000

1800000

2000000

Business As Usual Forced hybrid Forced electric and Bio-LNG Forced electric short routes, H2
long routes, Bio-LNG

catamarans

Forced electric short routes,
Bio-LNG long routes, Bio-LNG

catamarans

Forced electric short routes,
hybrid long routes, Bio-LNG

catamarans

Energy mix for every scenario in year 2049 (MWh)

Fossil diesel HVO Biodiesel Bio-LNG Grid electricity swapping Renewable electricity swapping Renewable H2 swapping CCS H2 swapping

GHG emissions:                           -47%                  -94%                    -95%                   -90%              -75%
Monthly ren. e- demand:        12 GWh             33 GWh             104 GWh              14 GWh              21 GWh
Capex (30 years):                       500 M$              220 M$              2000 M$              400 M$               380 M$        
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THANK YOU!
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Driving Maritime Talent 
through the

Marine Energy Transition

François Lambert
Directeur Général
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What is 
ENSM ?
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HISTORY

• First School of Hydrography, created by Charles IX in 
Marseille in 1571

• Creation of Ecole Nationale Supérieure Maritime (ENSM): 
2010

• Public scientific, cultural and professional establishment 
(EPSCP)

• Grand établissement, teaching and research missions

• Ministry of the Sea and Fisheries

• Head office in Le Havre
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1 SCHOOL, 4 LOCATIONS

I  BASIC TRAINING (FI)

• High school + 5 Engineer

o Sailing Engineer (dual purpose)

o Marine Engineer 

• High school + 3 (Bridge ou Engine)

• I  VOCATIONAL TRAINING (FP) 

• Navigating officers

I  CONTINUING TRAINING (FC)

More than 60 000 hours of classes/ year
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TRAINING COURSES
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4 FORMATIONS INITIALES
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High school + 5 Engineer

Sailing Engineer (dual purpose)

Diplôme Etudes Supérieures Marine Marchande

On-board ship internships, including a full semester 7 during 4th year

Location : Marseille 3 years + Le Havre 2 years

        Marine Engineer

- Eco Ship Management (EGN)

- Deployment and Maintenance of Offshore Systems (DMO)

Internships, including a full semester 10 at the end of 5th year

Location: Nantes

1

LE HAVRE

MARSEILLE

NANTES

2

3

4 GM

5 GM

4 NAV

5 NAV

3

DESMM

INGÉNIEUR ENSM

DEO1MM

BASIC TRAINING

1 Engineer diploma, 2 courses :
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Monovalent Bridge Officer

Officier Chef de Quart Passerelle / 

Capitaine 3000

Location : Le Havre

On-board ship internships, including full semester 5 during 3rd

year

1

Le Havre 2

3 OCQP-C3000

BASIC TRAINING
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Officier Chef de Quart Machine

Chef Mécanicien 8000 

Location : Saint-Malo

On-board ship internships available

1

Saint-Malo2

3OCQM-CM 8000

FORMATION INITIALE

Monovalent Engine Officer
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EDUCATIONAL EQUIPMENTS
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Equipment adapted to international maritime 

regulatory requirements (STCW) on the various 

ENSM sites.

I SIMULATORSS 
navigation, engine, loading, …

I SHIP-IN-SCHOOL

I WORKSHOPS
Electric and diesel engines, Coupling benches, …

I EDUCATIONAL INNOVATION
Pédagolab, Navirothèque

I CESAME 
Sea Rescue and Survival Center
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STUDENT LIFE
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I STUDENT OFFICES (Burals)

• Livening up student life

• Keeping merchant navy traditions alive

• One bural per site

I ACTIVITIES BY SITE

• Merchant Navy galas and student parties throughout the year

• Associative activities (orienteering, Laser Game, Olympiads, running
races, regattas)

• Choir and sea chanteys
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10 GOOD REASONS 
TO COME TO ENSM
N°1 -Crew spirit

N°2 -Openness to the world / cultural richness

N°3 - Career prospects and development and rapid assumption of 
responsibility

N°4 - Strict wage equality between men and women

N°5 - Attractive salaries

N°6 - Managerial responsibilities based on the values of our time: 
energy transition, combating psycho-social risks, etc.

N°7 - Contributing to national sovereignty (French merchant fleet)

N°8 - The most beautiful office in the world and the opportunity to live 
anywhere in the world

N°9 - Up to 6 months' vacation per year

N°10 - Year-round travel
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What drives 
to ENSM 
today ?
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What you can see
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What you can’t see
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Improving energy efficiency to reduce 
consumption and greenhouse gas emissions

-Optimizing ship shape to minimize drag

-Improved equipment: advanced navigation 
system

-Optimizing all energy consumed on board

Eco-design of ships: manufacturing 
processes and end-of-life management
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Energy and infrastructure

Less carbon-intensive fossil fuels 
(LNG)

-Biofuels

-E-fuels (synthetic fuels made from 
decarbonized electricity)

-Hybridization and electrification 
of ships and ports

-Vehicle propulsion and other 
renewable energies
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What makes 
that ENSM 
will keep 
students?
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Project 50% funded by French State within the framework of the workforce adaptation and 
qualification – IFPAI operation – Investment for the Future program by the Caisse des Dépôts

Raising crew awareness in wind propulsion for 
commercial ships 

a first online training to prepare for a safe and optimised operation 

IMO Website

Wind propulsion is gaining credibility
within maritime decarbonisation
pathway. Therefore, dedicated crew
training is increasingly important to
enable pioneering projects and
shipping companies that use wind
propulsion. So their crew can meet
appropriate technical knowledge to
safely and sustainably operate
wind-assisted and wind-powered
vessels.

The French Association Wind Ship, 
the French Maritime Academy 
(ENSM) and the company D-ICE 
Engineering facilitated a fruitful 
collaboration among Maritime 
Academy, operators (shipowners, 
charterers) and equipment 
manufacturers. Therefore, creating a 
quickly available and widely 
accessible training course on wind 
propulsion for ships.©Tom van Oossanen
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Three question 
to open 

discussion

Train

Grow

Convince
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Thanks for your attention
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A Crew-Centered Operational Approach 
to Implement Sustainable Technologies 

in Ship Design
Dr. Bas Buchner (President)
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MARIN: Maritime Research Institute Netherlands, Wageningen
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Model tests ocean liner ‘Oranje’ at NSMB/MARIN in 1937
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Wageningen B-series propellers
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Wageningen F-series propellers (updated B-series)
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Cavitation reduction by air bubbles injection (SATURN)
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Multi-objective optimization of Energy Saving Devices (CFD)
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‘FlowPike’ full scale Particle Image Velocimetry (PIV)
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Full scale cavitation observation
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From Design to Operation with all our tools

MonitoringModel testsComputations

Data scienceScaled realityCFD / Time domain

CONCEPT DESIGN OPERATION
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Clean, safe and smart shipping, 

sustainable and secure use of the seas

199



Better Ships, Blue Oceans:
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Use case: Zero emission freighter (hydrogen and wind assist)
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Use case: Zero emission freighter (hydrogen and wind assist)
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Challenges:

• Aerodynamic efficiency (including interactions)

• Sail control (VPP), crew roles in sail handling, route optimization

• Hydrodynamic design (slightly drifting, propeller inflow)

• Seakeeping and stability in heavy weather

• Course keeping and maneuvering (busy traffic, ports, channels)

• Hydrogen availability, bunkering and safety

• Hybrid power train dynamics and responsivity (compare to diesel)

• Optimization wind and hydrogen propulsion (energy management)

• Crew training for new complex systems
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Wind Propulsion from Concept to Operation

MonitoringModeltestsSimulation

Big data / AIPrototypeComputer

CONCEPT DESIGN OPERATION
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CFD: Hydro/Areodynamics and Interaction effects 
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Seakeeping, course keeping and maneuvering 

Dynarigs and Flettner rotors 
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Wind (Assisted Ship) Propulsion at Sea

Instrumented suction sails with lidar measurement of the wind field 
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Wind Propulsion from Concept to Operation

MonitoringModeltestsSimulation

Big data / AIPrototypeComputer

CONCEPT DESIGN OPERATION
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Enough for these challenges?

• Aerodynamic efficiency (including interactions)

• Sail control (VPP), crew roles in sail handling, route optimization

• Hydrodynamic design (slightly drifting, propeller inflow)

• Seakeeping and stability in heavy weather

• Course keeping and maneuvering (busy traffic, ports, channels)

• Hydrogen availability, bunkering and safety

• Hybrid power train dynamics and responsivity (compare to diesel)

• Optimization wind and hydrogen propulsion (energy management)

• Crew training for new complex systems
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Zero Emission Lab (ZEL): Engine Room of the Future
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Many combinations possible to power a ship

Source: https://sustainablepower.application.marin.nl/ 211

https://sustainablepower.application.marin.nl/


Use case: Zero emission freighter (hydrogen and wind assist)
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Simple power train: diesel engine, gearbox, propeller
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Simple power train: diesel engine, gearbox, propeller

Gearbox ICE

Fuel Storage

Fu
e

l 

214



Much more complex zero emission power train

Gearbox ICE

Fuel Storage

Gearbox

ICE

Fuel Storage

Electro motor

Energy 
Management

Carbon 
Capture

Fuel cell Supercaps AC/DC converterBatteries

Fu
e

l 
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Challenges in Hydro-Systems Integration:

• Hydrogen availability, bunkering and safety

• System complexity and maintenance

• Hybrid power train dynamics and responsivity (compare to diesel):
• Accelerating

• Cavitation

• Maneuvering

• Seakeeping

• Ventilation

• Stopping

• Crew training for new complex systems

216



Cavitation tunnel (1939) became Zero Emission Lab (ZEL)
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Zero Emission Lab (ZEL): Engine room of the future
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Much more complex zero emission power train

Propulsion
control panel 

Connection to
400 VAC shore grid

Battery set

SupercapsICE generator

Hybrid propulsion set

ICE engine

E-motor/generator

Grid
converter

CPP

Electric power

Control

Power supply to the DC grid

Power consumption or charging

Aux consumers

Hydrogen
fuel cell

Gearbox

kts

Speed setpoint

Propulsion mode

• Automatic
• ICE direct
• ICE electric
• Battery electric
• Off

Elec. Power mode

• ICE generator
• Zero emission
• Off

• ICE direct

Power suppliers

Power consumers

MethanolDiesel Waterstof

Hydro-systems integration: dynamics of the complete power train
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ZEL: Hydro-Systems integration and crew involvement
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Hydro-systems integration in dynamic conditions

700V DC grid

Motor / Generator

Drive
Auxiliary 

Load

External
load motor

“Combustion”
   motor

Fuel
Cell

Super
Capacitor

Generator Battery

Hydrogen

Efficiency
Acceleration
Stopping
Caviation

Maneuvering
Seakeeping
Ventilation
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ZEL: Hydro-Systems integration and crew involvement
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First bottle of clean exhaust from ZEL’s fuel cell! 
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From Design to Operation with all our tools

MonitoringModel testsComputations

Data scienceScaled realityCFD / Time domain

CONCEPT DESIGN OPERATION
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Hydro-systems integration including power train dynamics

MonitoringModel testsComputations Zero Emission Lab

Data scienceScaled realityCFD / Time domain Power train dynamics

CONCEPT DESIGN OPERATION
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Zero Emission Lab (ZEL): Engine Room of the Future
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A Crew-Centered Operational Approach…
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Seven Oceans Simulator centre (SOSc)
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Seven Oceans Simulator centre (SOSc)
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Seven Oceans Simulator centre (SOSc)

Safe and efficient maritime operations through the most realistic 
simulations by bringing people and technology together
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The SOSc was opened by our King on May 28 
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The SOSc was opened by our King on May 28 
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Large Motion Simulator (LMS)
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Large Motion Simulator (LMS): 16 m diameter dome

Bridge 4,5 x 5,5 m (14 ton max), 6 degrees of freedom motion
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Crew-centered: step on board the ship before it is built
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Crew-centered: step on board the ship before it is built
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Full Mission Bridge
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Full Mission Bridge (16 m wide: domes around bridge wings)
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Full Mission Bridge (16 m wide: domes around bridge wings)
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Fast Small Ship Simulator (FSSS)
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Search and Rescue Boat on Fast Small Ship Simulator (FSSS)
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Search and Rescue Boat on Fast Small Ship Simulator (FSSS)
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Maritime eXperience Lab (MX Lab): VR/AR & mixed reality
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Maritime eXperience Lab (MX Lab): VR/AR & mixed reality
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Maritime eXperience Lab (MX Lab): VR/AR & mixed reality
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From Design to Operation with all our tools

MonitoringModel testsComputations

Data scienceScaled realityCFD / Time domain

CONCEPT DESIGN OPERATION
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Crew-centered Operational Ship Design: ZEL & SOSc

Model tests Zero Emission Lab

Scaled reality Power train dynamics

CONCEPT DESIGN OPERATION

Seven Oceans Simulator

Human Factors
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Crew-centered: step on board the ship before it is built!
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Crew-centered: step on board the ship before it is built!
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Crew-centered: step on board the ship before it is built!
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A Crew-Centered Operational Approach 
to Implement Sustainable Technologies 

in Ship Design
Dr. Bas Buchner (President)
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CONFÉRENCE DE PRESSE
28 OCTOBRE 2024
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NOTRE MISSION : 
Faire de la  filière vélique
un incontournable de la
scène logistique. 
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TOWT EN 2024
2 navires entrés en opération en aout 

Anemos et Artemis : des voiliers-cargos
pouvant transporter plus de 1100 tonnes
de marchandises par trajet

Décarbonation à hauteur de 95%

Le Label Anemos a été créé pour prouver
cette décarbonation
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DES NAVIRES HAUTEMENT TECHNOLOGIQUES
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UN VOYAGE INAUGURAL
COURONNÉ DE SUCCÈS

3 escales : New-York, Santa Marta, Québec

Le Havre / New-York en 15 jours

Des leads time respectés

Chargement / déchargement 
 autonome et efficace

Vitesse moyenne de 10 nœuds (record de
vitesse à plus de 16 nœuds battu)
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La plus grande flotte au monde avec 8 navires
Construction déjà en cours au Vietnam sur les chantier Piriou
L’ouverture de nouvelles routes

L’AVENIR
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UN 3ᵉ NAVIRE DÉJÀ EN CONSTRUCTION : ATLANTIS 

Cérémonie de la pose de la quille au Vietnam
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LA PAROLE À NOS PARTENAIRES : 
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Presentation
Neoline

Wind powered cargo ship
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Our vision

INDUSTRIAL

COMPETITIVE

ZERO EMISSION

Illustration Pierre Zanuttini

Neoliner 136m roro

Capacity  of 1200 ml or 400 cars or 
5300 tons

80% to 90% of consumption 
reduction
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H²

Conventional 
shipping
@ 15 kts

Neoline 
@ 11 kts

0

50%

100%

25%

75%

SLOW STEAMING

WIND AS MAIN PROPULSION

Auxiliary energy production

MGO

Pilot vessel: 80% to 90% of fuel 

consumption reduction.

Mid-term objective: « quasi 0 

emission ».

Our 
solution
Decarbonized energy mix: 
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THE PILOT 
LINE

- Original secondary route

- Ideal from wind perspective

- New hinterlands proximities

Shippers are already involved :

New market, corresponding to a booming CSR demand

A new regular transatlantic route

Signed transport 
commitments with: 
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NEOLINER ORIGIN
Main particulars

• Dimensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  446 x 79 ft

• Sai l  surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3000 m²

• Auxil iary  propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . diesel-e lectr ic  4000 kW

• Commercial  speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 kts

• Engine maximum speed.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 kts

• Air  draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reductible  to 136 ft

• Water draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reductib le  to 16 ft

• Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 000 MT

• Crew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 (+12 passengers)

Specialized for oversized and heavy freights

• Max height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 ft

• Roro capacity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1200 lm 

• Cars capacity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 CEU

• Containers capacity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265 TEU

• Breakbulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5  300 MT

• Reefer plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Technical partners:

Credits: Neoline / Mauric
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FOCUS ON SOLID SAIL
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FOCUS ON ANTI 
DRIFTING FINS
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NEOLINER ORIGIN 
CONSTRUCTION

Construction’s steps

T
a

n
k

 t
e

s
t 

(M
a

rc
h

 2
0

2
3

)
S

o
lid

s
a

il
ti

lt
in

g
 t

ri
a

l (
A

p
ri

l 2
0

2
3

)
K

e
e

l l
a

yi
n

g
 (

2
0

2
4

-0
2

-1
4

)

Start of 2025:

• Lauching

Summer 2025:

• Comissioning
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contact@neoline.eu
www.neoline.eu
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Economic Viability Of Small 
Sail Freighters In The 

Northeast United States

Steven Woods
Center for Post Carbon Logistics
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Small Vessel Sector:

2 272
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AREA OF 
INTEREST
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2030
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Less-than Truck Load (LTL) Shipping

Consolidates many small shipments into one large truckload.

Most loads of 1-4 pallets each.

Truck drives a route making pickups and dropoffs throughout.

Generally more expensive per unit than FTL (Full Truck Load) 
shipping.

This is the most logical customer base for small sail freighters in early 
stages.
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The Example Cargo
4x4x4 foot pallet of Malt.

Weight 2000 Lbs.

Stowage Factor 64 cubic ft per short ton.

Non-hazardous, non-alcoholic.

Delivered with no extra accommodations or requirements (lift 
gate, etc)
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This Presentation Uses 10 CDWT Vessels.

Routes Shown Assume Undercutting Trucks.

Detailed Financials Are Available By Request.

Route Analysis Available By Request.

Paper In Journal Of Merchant Ship Wind Energy.
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PINKY SCHOONER 
MAINE
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ASSUMPTIONS:

Ship Building: $500,000 Insurance: 10%
Longshore Fee: $20/Port Crew: 2

Maintenance: 10% Fuel: 0.125 
gal/day@ $5

Marina Membership: $500/ft Port Fees: 
$9/ft

No Backhaul Cargo 130 
Voyages/Year

2 days /voyage Full & Down @ 10 CDWT/600 
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Spherical Cows Are Friends (Not Food)
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IS IT REALLY VIABLE? 
Can Sailors Afford To Take This Job?

☛ US Average Income in 2022 was $51,123 (US Census Bureau)

☛ $200 Per Sailor Day gives approximately $52,000 per year on most routes.

☛ Additional $25 per sailor day for provisioning gives + $6,500 per year.

☛ Employee Ownership Program can increase sailor income, if available.

☛ A Living Wage for a single person in Boston is $62,000 Gross Income.
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Questions?
Steven@PostCarbonLogistics.org
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Preliminary Design Report for 
Hydrogen Feeder Vessels

Transporting LH2 from Offshore 
Windfarms to Shore Reception Facilities

JOHN DONNELLY, SEAMUS O’NEIL, CHRISTOPHER CHU, BRIDGET DONOVAN, & KENNETH 
JONES

ASST. PROFESSOR HARIHARAN BALASUBARAMIAN

Department of Naval Architecture and Marine Engineering
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The pipelines or cables typically used to transport 
power from wind farms to shore create limitations 
for deepwater wind farms

Undersea cables typically 
cost $2.5 million/km or 
more
Undersea pipelines cost 
$4-7 million/km [2]

[3]
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Despite the challenges of transporting and storing 
hydrogen, it can be immensely useful and a fuel 
source.

Power required to produce hydrogen: 42-60 kWh/kg

Power required to liquefy hydrogen: 11-15 kWh/kg

Density of hydrogen gas: 0.09 kg/m3 [4,6]
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Wind Farm Capacity (MW) LH2 Capacity (m3/day)

Empire Wind 1&2 2100 6640-9490

Sunrise Wind 924 2920-4170

Attentive Energy One 1404 4440-6340

Community Offshore Wind 1314 4150-5940

Excelsior Wind 1314 4150-5940

Beacon Wind 1230 3890-5560[7,8,9,10]
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150,000m3 vessel 50,000m3 vessel
Length on DWL: 271 m Length on DWL: 169 m
Beam: 48 m Beam: 30 m
Draft: 8 m Draft: 6 m
Speed: 18 knots Speed: 15 knots
Displacement: 71680 tons Displacement: 21864 tons
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The ships utilize a dual-fuel-electric 
propulsion system

Ship 150,000 m3 vessel 50,000 m3 vessel

Required Power (approximate) [11] 25 MW 2 MW

Generators [12] 9H54DF (12.6 MW) Wärtsilä 8V31SG

Installed Power 51 MW 17 MW

EEDI (approximate) 1.7 0
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Evolution Time to Complete (hours) Hydrogen burnt (m3 ) Diesel Burnt (tons)

Travel 76 930 5.1

Loading at Farms 75 1900 7.4

Offloading 40 670 2.6

TOTAL 191 3050 15

The 150,000m3 vessel can complete a trip in 8 
days
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Evolution Time to Complete (hours) Hydrogen burnt (m3 )

Travel 96 384

Loading at Farm 27 150

Offloading 27 152

TOTAL 150 687

The 50,000m3 vessel can complete a trip in 
6 days
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Application Multi-Farm Servicing Single Farm Servicing

Transport 
Method

150,000m3
vessel

Gas 
Pipeline

Electrical 
Cable

50,000m3
vessel

Gas 
Pipeline

Electrical 
Cable

Capital 
Cost

$258M $2000M $805M $122M $600M $300M

Required 
Freight 
Rate

$3.04/kg to 
$4.34/kg

$0.60/kg to 
$0.86/kg

$5/MWh $0.29/kg to 
$0.42/kg

$1.68/kg to 
$2.40/kg

$11/MWh
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Future Works:
• Maneuvering study and characteristics, including additional power and 

regulatory requirements for dynamic positioning
• Detailed study on regulatory compliance
• Further Hydrostatics properties discussion
• Strength analysis
• Investigation into the potential of a dual-purpose LH2 carrier/ offshore 

supply vessel
• Investigation into the potential affects of single-point mooring systems on 

the feasibility of using feeder vessels to transport hydrogen from windfarms 
to shore.

• Selection of potential shipyards

Please direct questions to:
• Seamus O'Neil seamusone.21@sunymaritime.edu
• John Donnelly johndon.21@sunymaritime.edu
• Kenneth Jones kennethjon.21@sunymaritime.edu
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Thank You
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Owner 
Requirements

• Max DWT of 450,000 carrying 
iron ore.

• Must transport 1,000,000 MT of 
iron ore between Brazil and 
Japan within a year.

• Includes the use of wind 
assisted ship propulsion 
(WASP) to reduce emissions.
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Principle 
Dimensions 
(Preliminary 
ship design)

Iron Ore Max Capacity 450,000 DWT

Length Overall 365 m

Length Between Perp. 360 m

Beam 68 m

Design Draft 23 m

Depth 30.6 m

L/B 5.47 -

B/T 2.82 -

B/D 2.14 -

L/D 11.8 -

Displacement @DWT 450000 515944 MT

Cb 0.895 -

Design Speed
Fn
S-L ratio @14 kt

14
0.121
0.737

Knots
-
-
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Construction Costs
(Carreyette's method)

 

Steelwork labor coef., A' 4,160

Steelwork material coef., B' 624

Outfit labor coef., C' 46,795

Outfit material coef., D' 10,399

Machinery labor coef. 1,040

Machinery material coef. 4,160

Steelwork labor cost (million $) 44.8

Steelwork material cost (million $) 32.01

Outfit labor cost (million $) 8.91

Outfit material cost (million $) 18.42

Machinery labor cost (million $) 5.53

Machinery material cost (million $) 22.13

Total ship building cost (million $) 131.81

• Carreyette method used to find 
coefficients/ costs.

• Valemax roughly 110 million 
dollars to build.

• Planning to build ship in South 
Korea at Daewoo Shipbuilding and 
Marine Engineering.
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Operating Costs

• Cost of lube oil – 1100 $/MT
• Port costs are rough estimate-Contact 

port authorities for exact information.
• Dockage due =.2$ * Gross tonnage
• Port due = L*2$*days
• Cargo handling= 6$ per MT (Use crane 

system)

Annual fuel oil cost (million $) 14.23

Annual lube oil cost (million $) 0.1456

Annual port cost (million $) 12.53

Annual running cost (million $) 7.500

Total operating cost (million $) 34.41

Annual capital charges (million $) 7.591

Total annual cost (million $) 42.001
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Fuel costs breakdown

• 3 round trips a year @333333 DWT
• 4,742,118 dollars a round trip
• 14,226,353 dollars a year for fuel cost

Brazil to 
Japan

Japan to 
Brazil

Cost per tonne 
VLSFO

Brazil, 641 
dollars

Japan, 653 
dollars

Operating 
conditions

Loaded 162.1 
g/kwh

Unloaded 
155.2 g/kwh

One way 
consumption

3743.953 
tonnes/trip

3586.897 
tonnes/trip

Cost per trip 2,399,874 
Dollars

2,342,244 
Dollars
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Operations
• Traveling from the ports of Ponta da Madeira, 

Brazil to Oita in Japan.
• Carrying 333,333 DWT to follow port 

restrictions. (Japan port Oita limiting DWT).
• Minimum operating days required to ensure 1 

millions MT of iron ore delivered in a year.

Operational data

Nautical miles per round trip 24060

Annual operating days 230

Proportion of miles in ballast (%) 50

Average loaded cargo / maximum (%) 0.7333

Load factor (%) 0.3666

Average speed (weighted average) 14.5

Steaming days per round trip 69.13

Port days per round trip 7

Total days per round trip 76.13

Round trips per year 3.020
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Powering & Engine Selection

• Engine selected-WinGD X72-B 7 cylinder to satisfy 
results from CFD

• Engine is specifically designed for larger 
commercial vessels with EEDI regulations and 
operational flexibility in mind. Two stroke, low 
speed diesel engine.

• Designed for reliability and long periods of time 
without maintenance. 

Engine Data

Bore Diameter 720 mm

Piston Stroke 3 086 mm

Shaft Speed 66-89 rpm

Fuel Consumption rate 162.1 g/kWhr

Mean Effective Pressure 21 Bar

Weight Engine 642 MT

Power Output 15,000-27,440 kW

Specific Power 18.6 KW/MT
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Weights (lightship items)
• The lightship weights are calculated using the 

methods outlined by Watson.

• The structural weight obtained by equipment 
number estimate. 

• These weights represent a ship without 
deadweight items such as cargo, required fluids, 
crew and other items not present in lightship.

Weights and centers - Lightship

Category Weight, MT VCG, m above BL Wt*VCG, MT-m

Light Ship Items:

Hull Structure 49474.457 13.774 681441.382

Super Structures 0 17.5 0

Deck Houses 1150.288 43.396 49917.895

Structure Sum 50624.745 14.447 731359.276

Outfit 2663.424 32.1 85495.910

Special Outfit 0 0 0

Machinery:

Propulsion 1478.891

Remainder 882.507

Machinery sum: 2361.398 12.7167 30029.155

Margin 1112.991 15.218 16937.687

Lightship Sum: 56762.558 15.218 863822.029
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Weights continued (deadweight example)

Deadweight 
Items: Weight, MT VCG, m above BL WT*VCG, MT-m

Cargo DWT 333333 16.321 6983184.091

Fuel Oil 8731.124 1.55 13533.242

Lube Oil 43.843 27.6

Ballast Water 0 0 0

Fresh Water 379.464 22.95 8708.705

Crew and Effects 5.1 30.6 156.06

Provisions 22.321 30.6 683.0357

Deadweight sum: 342181.853 20.47526798 7006265.135

Total Ship weight: 399277.411 18.850 7870087.163

• The deadweight items 
are calculated including 
fuel oil, lube oil, fresh 
water, crew and effects, 
and provisions.

• Each items weight in MT 
multiplied by the VCG 
gives us the moments.

• These calculations 
represent a carrying 
capacity of 333,333  
DWT.
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EEDI
• As part of the owns requirement, the ship is 

intended to comply by use of WASP.

• IMO aims to reduce fuel consumption on 
ships and greenhouse gas emissions.

• To see which WASP arrangement is best, we 
analyze four arrangements, one without 
wasp.

• We are yet to Calculate an EEDI bespoke to 
each WASP arrangement.

Mammoth Max EEDI 
(g(CO2))/ton-mile

Phase-1 DWT regression 
reference

1.934

Phase-3 Required EEDI 1.354

Phase-3 Ideal attained EEDI 1.286

EEDI calculated (prior to 
WASP installation)

1.948
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Flettner Rotors
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Rigid Sails
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Flettner Rotors & Rigid Sails
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Future Requirements

• Produce and Prepare foam hull model to validate CFD results.

• Derive a method to account for wind speed and direction along various routes.

• Produce calculations of WASP performance.

• Calculate a refined a ROI calculation for each arrangement considering WASP 
performance.

• Strength and stress analysis on ship.

• Determining Maneuvering capabilities.

• Researching into additional green energies to further reduce EEDI come the 
occasion which WASP is not enough.
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A Novel Application of 
AI for Liquid Cargo 
Loading and Discharge 
Operations

Katherine Mattikow

Patent Pending

ⓒ
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Overview

Using artificial intelligence and smart sensors to 

optimize marine liquid cargo transfer operations can 

improve efficiency, reduce the incidence of 

unintentional cargo discharge, and mitigate cargo 

losses. 
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Ballast 
Water

Liquid 
Cargo

Inert 
Gas

This presentation focuses on the liquid cargo 
aspect of cargo management

Components of Liquid Cargo Transfer
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Sensors Microprocessor Actuators
Cargo 

Control 
Console 

AI 
Software

System Schematic
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Smart Sensor 101

Sensing Unit

Signal 
Conditioning  

+ Self 
Diagnosis

Analog to 
Digital 

Conversion

Application 
Algorithms

Communication 
Unit

Memory

User 
Interface

Smart Sensor Benefits
● Self-diagnostics predict future 

performance of the sensor
● Simplified wiring
● Remote monitoring and 

troubleshooting
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Data Flow

Smart Sensor 
Data

integrated 
throughout the 
cargo handling 
system, providing 
continuous feedback 
on variables such as 
tank levels, 
temperature, 
pressure, flow rates, 
and valve statuses

Input 
Variables

● Drafts
● Temperature
● Gas Profile
● Fill 

Percentage
● Valve Status
● Pump Status
● Pressure

Algorithm

● Flow 
Calculations

● Throughput 
Determination

● Pressure 
Trends

Actuation

Actuators 
implement the 
step-by-step plan 
by mechanically 
manipulating 
valves and pumps

AI Decision 
Making

Interprets 
algorithmic 
outputs, decides 
optimal method for 
achieving 
loading/discharge, 
sends action 
information to the 
actuators
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Flow Calculation
(Simplified)

Flow Rate Q

Pressure P

Pipe Radius r

Fluid Viscosity η

Pipe Length l

Density ρ

Specific Gravity G

Pressure Drop ΔP

Flow Coefficient Cv

Temperature T

Inlet Diameter d

Stem Flow m

Viscosity Fv

Reynold’s Number Re or Nr

Kinematic Viscosity Vcs

Q = Flow Rate
P = Pressure
r  = Pipe Radius
η = Fluid Viscosity
L = Pipe Length
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Applications

01 Efficiency and Optimization of Cargo Operations

02 Environmental Harm Reduction

03

Cargo Shortage and Loss Mitigation04

Enabling Full Vessel Automation

ⓒ
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Efficiency and Optimization of 
Cargo Operations

Lower 
Turnaround 

Times

Lower 
Operational 

Expenses

More 
Voyages

Uninterrupted 
Supply Chain

Positive 
Relationships 
with Shippers

Current Lay 
Time

22.56 
Hours

ⓒ

1
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Environmental 
Harm Reduction

Deficiency of 

Concentration05

Procedure Fault03

Fatigue02

Miscommunication01

Deficiency of Situational 

Awareness06

Absence of Work Plan04

90%

Human error accounts for 
90% of oil spills in the 
marine environment

Causes of human error in marine pollution incidents 
during the loading/discharge of liquid cargo

ⓒ

2
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Enabling Full Vessel Automation
3

ⓒ

Autonomous 
Docking

Autonomous 
Steering 
Systems

Autonomous 
Fueling

Autonomous 
Cargo 
Management

Necessary 
components of 
full vessel 
automation
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ⓒ

No shipboard artificial intelligence augmented system may take the 

onus of watchstanding from the seafarer as it is mandated by law.

It is essential to note that while artificial intelligence can enhance marine 

transfer operations, human oversight and intervention should still be 

maintained, particularly for critical decision-making and handling 

unforeseen circumstances. The use of artificial intelligence in this context 

should aim to augment human capabilities and enhance safety rather 

than replace human roles entirely. 
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Cargo Shortage and Loss Mitigation

4

ⓒ

Causes of 
Cargo 

Shortage 
and Loss

In-transit 
Cargo Loss

Discrepancies 
Between Ship 

and Shore 
Figures

Inaccuracies 
in Draft 
Surveys
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Cargo Shortage and Loss Mitigation

A discrepancy between ship and shore figures of 0.3%
or lower is within acceptable margins

A properly executed draft survey may have a 0.5%
inaccuracy

In the most severe scenario, the compounded miscalculation is 

0.8%

ⓒ
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$1,804,560
Saving per loading or discharge

(75.19 x 3,000,000) x 0.008 =

ⓒ
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Additional Future Applications

● Lightering

● Inter-tank Transfers

● Underway Ballasting

● Predictive Maintenance

● Alternative Fuel Management

ⓒ
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Sustainability in Ship Design and Operations Conference 2024

FSRU CLOSED LOOP MODIFICATION

Jonathan Cullum 

Technical Superintendent

ENERGOS INFRASTRUCTURE

Hariharan Balasubramanian

Assistant Professor, Department of Naval 

Architecture and Marine Engineering

SUNY Maritime College
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Jonathan Cullum

USMMA 1991

Marine Engineering Systems

USCG Chief Engineer

Steam / Motor /GT

Unlimited HP

Over 30 years at sea

LNG Carrier / Oil Tanker /  Container / RoRo

Technical Superintendent

Energos Infrastructure

2022(Nov) – present

Hariharan Balasubramanian

2005 – 2011 

Motor / Steam LNG Carriers

as 3rd Assistant and 2nd Assistant Engineer
 

2011 – 2019 

M.S & PhD in Ocean Engineering 

(Florida Atlantic University)
 

2020 – 2022 

Hydrodynamicist 

(Ship – Bridge simulation models & Icebergs)
 

2022(Nov) – present 

Assistant Professor

Department of Naval Architecture 

and Marine Engineering

State University of New York Maritime College
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What is an FSRU?

F Floating

S Storage

R Regasification

U Unit
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What is an FSRU?
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Why use LNG ?
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Regasification

OPEN use SW for heating

CLOSED use external heat

COMBINED
use SW and external 

heat together
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Minimum SW inlet temp  14°C

SW Temps
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FSRU Development

First Gen
use Propane as 

intermediary fluid

Second Gen
use direct LNG/SW 

heat exchangers

Third Gen
use Glycol as 

intermediary fluid
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Energos Igloo

OPEN LOOP

• 14°C minimum inlet SW 

temp (10.0°C is setting 

for PSD)

• 5°C minimum outlet SW 

temp (3.0°C is setting 

for PSD)
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Heating from Shore
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First Year of Operation

Harbor temperature as low as 3.5°C

14°C minimum inlet SW temp

9°C outlet SW temp

5 – 6 °C ΔT
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Close the Loop

Recirculate the vaporizer SW outlet

to the lift pump suction

Capture the 5 – 6 °C ΔT 

Obtain a higher capacity of the regas 

plant
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Can we do it ?

In 2018 a Hydroturbine Generator was 

installed to recapture some of the 

energy used to “lift” the SW to the regas 

plant

So we already had a header tank to use 

for a closed loop circuit

383



384



385



386



387



388



389



Do the Math
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Increased Sustainability

Increased efficiency

Less fuel used for regas

Less emissions

Less warm water to harbor
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Design Considerations

How to do it while on station

How to get the pipes into place

Increased suction head pressure

Stagnant water in the loop
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Participants
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Preliminary Design

Steel pipe with Glass Flake for tie-in

GRE pipes for recirculation

Additional Pressure Switches

What could go wrong?
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Prefabrication

405



Delivery

406



Shutdown and Start
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Conclusions

Project met expectations

Project completed 

on time and within budget
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